Coffee is one of the most beloved beverages in the world, making it the second most globally traded commodity (just behind crude oil). The conventional notion that drinking coffee might be detrimental to human health derives from studies carried out in the 1950s and 1960s. This research failed to account for cigarette smoking which, as was discovered later, confounded and masked coffee's benefits. Since then, and especially since the new millennium, research evidence for coffee's health benefits has mounted significantly. More and more large and long-term studies have demonstrated that coffee offers protection against type 2 diabetes, assorted cancers, and neurodegenerative diseases including Parkinson's and Alzheimer's diseases.

Coffee: Emerging Health Effects and Disease Prevention is the first book to present a contemporary and comprehensive summary of the newly-understood bioactive effects of the many compounds in coffee. The breadth and depth of coverage is extensive and balanced, focusing on the following topics: coffee constituents and their bioavailability; pro- and antioxidant properties; the health benefits and disease prevention effects of coffee; and potential negative health impacts. Multiple chapters describe coffee's positive impacts on health and various diseases, including type 2 diabetes, neurodegenerative diseases, cancer and cardiovascular and liver diseases. Coffee's positive effects on mood, suicide rate and cognitive performance are addressed, as are the negative health impacts of coffee on pregnancy, insulin sensitivity, dehydration, gastric irritation, anxiety, and withdrawal syndrome issues.

Written by many of the top researchers in the world, this volume is a must-have reference for food professionals in academia, industry, and governmental & regulatory agencies whose work involves coffee.

The Editor
Dr Yi-Fang Chu was Head of the Global Coffee Wellness Research Group at Kraft Foods Global Inc., Glenview, Illinois, USA. He is currently with PepsiCo Global Nutrition, Barrington, Illinois.

Also available from IFT Press
Nondigestible Carbohydrates and Digestive Health
Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals
Nutraceuticals, Glycemic Health and Type 2 Diabetes
Coffee
Emerging Health Effects and Disease Prevention
The *IFT Press* series reflects the mission of the Institute of Food Technologists—to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley-Blackwell, *IFT Press* books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 22,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group

Casimir C. Akoh
Christopher J. Doona
Florence Feeherry
Jung Hoon Han
David McDade
Ruth M. Patrick
Syed S.H. Rizvi
Fereidoon Shahidi
Christopher H. Sommers
Yael Vodovotz
Karen Nachay

IFT Press Editorial Board

Malcolm C. Bourne
Dietrich Knorr
Theodore P. Labuza
Thomas J. Montville
S. Suzanne Nielsen
Martin R. Okos
Michael W. Pariza
Barbara J. Petersen
David S. Reid
Sam Saguy
Herbert Stone
Kenneth R. Swartzel
Titles in the IFT Press series

- Accelerating New Food Product Design and Development (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li-Chan, and Bo Jiang)
- Biofilms in the Food Environment (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönül Kaletunc)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Irradiation Research and Technology (Christopher H. Sommers and Xuetong Fan)
- High Pressure Processing of Foods (Christopher J. Doona and Florence E. Feeherry)
- Hydrocolloids in Food Processing (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- Microbial Safety of Fresh Produce (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravanis)
- Microbiology and Technology of Fermented Foods (Robert W. Hutkins)
- Multivariate and Probabilistic Analyses of Sensory Science Problems (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- Natural Food Flavors and Colorants (Mathew Attokaran)
- Nondestructive Testing of Food Quality (Joseph Irudayaraj and Christoph Reh)
- Nondigestible Carbohydrates and Digestive Health (Teresa M. Paeschke and William R. Aimutis)
- Nonthermal Processing Technologies for Food (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- Nutraceuticals, Glycemic Health and Type 2 Diabetes (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Michael G. Johnson, and Corliss A. O’Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- Regulation of Functional Foods and Nutraceuticals: A Global Perspective (Clare M. Hasler)
- Sensory and Consumer Research in Food Product Design and Development, second edition (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- Sustainability in the Food Industry (Cheryl J. Baldwin)
- Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
- Water Activity in Foods: Fundamentals and Applications (Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
- Whey Processing, Functionality and Health Benefits (Charles I. Onwulata and Peter J. Huth)
Contents

Preface xvii
List of Contributors xix
List of Abbreviations xxii
Acknowledgement xxv

1 Introduction 1
 Thomas Hatzold
1.1 Coffee—a popular beverage 1
1.2 Coffee from a nutritional perspective 1
1.3 Potential beneficial effects of coffee 2
1.4 Limitations to the beneficial effects 3
1.5 History 5
1.6 Coffee production worldwide 5
1.7 Coffee processing: formation and fate of bioactive compounds 5
 1.7.1 Green bean processing, storage, and transport 6
 1.7.2 Blending 8
 1.7.3 Roasting 8
 1.7.4 Grinding 10
 1.7.5 Packaging and storage 10
 1.7.6 Decaffeination 10
 1.7.7 Soluble coffee production 10
1.8 New processes to optimize the health benefits of coffee 10
 1.8.1 Enhancement with mannooligosaccharides 11
 1.8.2 Use of green bean extracts 11
 1.8.3 After-roast blending for enhanced antioxidative properties 11
 1.8.4 Stomach-friendly coffee 12
1.9 Coffee preparation 12
 1.9.1 Boiled coffee 13
 1.9.2 Cafetière or French press coffee 13
 1.9.3 Filter coffee 13
 1.9.4 Espresso 13
 1.9.5 Moka (mocha) 13
 1.9.6 Percolated coffee 13
 1.9.7 Soluble coffee 13
 1.9.8 Liquid coffee 13
 1.9.9 Single-serve coffee machines 14
1.10 Coffee beverages and specialties 14
1.11 Coffee consumption 14
2 Coffee Constituents
Adriana Farah

2.1 Introduction 21
2.2 Production of coffee and coffee-based beverages 22
 2.2.1 Green coffee production 22
 2.2.2 Decaffeinated coffee production 23
 2.2.3 Steam-treated and monsooned coffees 24
 2.2.4 Coffee roasting 24
 2.2.5 Coffee brewing 25
 2.2.6 Instant coffee production 26
2.3 Natural coffee constituents 26
 2.3.1 Green coffee chemical composition 27
 2.3.1.1 Nonvolatile compounds in green coffee 27
 Caffeine 28
 Trigonelline 29
 Chlorogenic acids 30
 Cafestol and kahweol 31
 Soluble dietary fiber 32
 Water 33
 Carbohydrates 33
 Protein, peptides, and free amino acids 33
 Minerals 33
 Lipids 34
 2.3.1.2 Volatile compounds in green coffee 34
 2.3.2 Changes in coffee chemical composition during roasting 35
 2.3.2.1 Nonvolatile components in roasted coffee 35
 2.3.2.2 Volatile compounds in roasted coffee 37
 2.3.3 Changes in coffee chemical composition during special coffee processing 39
 2.3.4 Chemical composition of coffee brew 41
2.4 Incidental coffee constituents 43
 2.4.1 Incidental nonvolatile compounds in coffee 43
 2.4.1.1 Ochratoxin A 43
 2.4.1.2 Biogenic amines 44
 2.4.1.3 β-carbolines 45
 2.4.1.4 Acrylamide 46
 2.4.1.5 Polycyclic aromatic hydrocarbons 47
 2.4.1.6 Pesticide residues 48
 2.4.2 Incidental volatile constituents in coffee 48
2.5 Concluding remarks 50
Acknowledgments 50
References 50
3 Bioavailability of Coffee Chlorogenic Acids

Angélique Stalmach

3.1 Introduction

3.2 Chlorogenic acids: contribution of coffee to dietary levels ingested

3.2.1 Dietary intake

3.2.2 Levels in coffee beverage

3.3 Bioavailability of coffee chlorogenic acids

3.3.1 Absorption and metabolic fate

3.3.2 Extensive metabolism upon intake

3.3.2.1 Identification of chlorogenic acid metabolites

3.3.2.2 Metabolic pathways

3.3.2.3 Bioavailability of intact chlorogenic acids

3.3.3 Urinary and biliary excretion

3.3.4 Effects of food matrix and co-ingestion on bioavailability

3.4 Conclusions

References

4 Coffee and Alzheimer’s Disease: Animal and Cellular Evidence

Marshall G. Miller and Barbara Shukitt-Hale

4.1 Introduction

4.2 Alzheimer’s disease

4.2.1 Prevalence

4.2.2 Symptoms

4.2.3 Gross pathology

4.2.4 Tauopathy

4.2.5 Cerebral amyloidosis

4.2.6 Other neuropathology

4.2.7 Genetic factors

4.2.8 Diagnosis

4.2.9 Treatments

4.2.10 Cellular and animal models of Alzheimer’s disease

4.3 Coffee

4.3.1 Cellular evidence

4.3.2 Animal evidence

4.4 Caffeine

4.4.1 Cellular evidence

4.4.2 Animal evidence

4.5 Phenolics

4.5.1 Cellular evidence

4.5.2 Animal evidence

4.5.3 Caffeic acid

4.5.4 Dicinnamoylquinides

4.6 Other coffee constituents

4.6.1 Trigonelline

4.6.2 Kahweol and cafestol

4.6.3 Pyroglutamate
Contents

4.7 Conclusions 91
References 92

5 Coffee and Alzheimer’s Disease—Epidemiologic Evidence 97
Joan Lindsay, Pierre-Hugues Carmichael, Edeltraut Kröger, and Danielle Laurin

5.1 Introduction 97
5.2 Review of epidemiologic studies of coffee in relation to Alzheimer’s disease, dementia, and selected aspects of cognitive functioning 98
5.2.1 Case-control/retrospective studies 98
5.2.2 Cross-sectional studies 99
5.2.3 Prospective cohort studies 100
5.3 The strength of the evidence for preventing Alzheimer’s disease 106
References 108

6 Coffee and Parkinson’s Disease 111
Jing-Wei Lim and Eng-King Tan

6.1 Introduction 111
6.2 Pathogenesis of Parkinson’s disease 111
6.3 Gene and environmental/lifestyle factors 112
6.4 Clinical evidence linking coffee consumption and Parkinson’s disease 113
6.5 Neuroprotection and active components of coffee 115
6.6 Adenosine receptor antagonism and Parkinson’s disease 116
6.7 Caffeine rescue of Parkinson’s disease in animal models 116
6.8 Clinical trials of adenosine receptor antagonists in Parkinson’s disease 117
6.9 Caffeine-mediated genetic susceptibility of Parkinson’s disease 118
6.10 Summary 118
Acknowledgments 119
References 119

7 Coffee and Liver Health 123
Pablo Muriel and Jonathan Arauz

7.1 The liver 123
7.2 Epidemiologic studies 124
7.2.1 Coffee and liver enzymes 124
7.3 Coffee, fibrosis, and cirrhosis 124
7.3.1 General aspects of fibrosis and cirrhosis 124
7.3.2 Coffee and cirrhosis 125
7.4 Coffee and animal models of hepatic fibrosis 126
7.5 Cytokines and liver fibrosis 127
7.5.1 Transforming growth factor-β in liver fibrogenesis 128
7.6 Mechanism of coffee’s protective effect 128
7.6.1 Oxidative stress, antioxidant-dependent mechanisms 128
7.6.2 Chemoprotective mechanisms: cafestol and kahweol 130
7.6.3 Phase I-mediated mechanisms 130
7.6.4 Inhibition of phase I activating enzyme expression 130
7.6.5 Inhibition of phase I enzymatic activity 131
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.6</td>
<td>Induction of phase II detoxifying enzymes</td>
</tr>
<tr>
<td>7.6.7</td>
<td>Molecular mechanism of induction: Nrf2/ARE signal pathway</td>
</tr>
<tr>
<td>7.7</td>
<td>Adenosine A<sub>2A</sub> receptors and caffeine</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Proinflammatory and anti-inflammatory actions of caffeine mediated through the adenosine A<sub>2A</sub> receptor</td>
</tr>
<tr>
<td>7.8</td>
<td>Caffeine metabolism and drug interactions</td>
</tr>
<tr>
<td>7.9</td>
<td>Conclusions</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>8</td>
<td>Coffee and Type 2 Diabetes Risk</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2</td>
<td>Observational associations between coffee consumption and type 2 diabetes risk</td>
</tr>
<tr>
<td>8.3</td>
<td>Coffee preparation</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Type of coffee: ground or instant</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Addition of milk or sugar</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Caffeine and noncaffeine components of coffee</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Lifestyle-related factors</td>
</tr>
<tr>
<td>8.4</td>
<td>Observational associations between coffee consumption and diabetes risk factors</td>
</tr>
<tr>
<td>8.5</td>
<td>Intervention studies in human subjects</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Effects of caffeine on glucose tolerance</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Effects of caffeinated coffee on glucose tolerance</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Effects of noncaffeine coffee components on glucose tolerance</td>
</tr>
<tr>
<td>8.5.4</td>
<td>Effects of coffee consumption on other diabetes risk factors</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Limitations of the existing intervention literature on coffee and diabetes</td>
</tr>
<tr>
<td>8.6</td>
<td>Possible mechanisms of action</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Modulation of energy expenditure by caffeine</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Modulation of carbohydrate absorption and incretin response</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Modulation of hepatic glucose output</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Modulation of insulin sensitivity</td>
</tr>
<tr>
<td>8.6.4.1</td>
<td>Anti-inflammatory effects</td>
</tr>
<tr>
<td>8.6.4.2</td>
<td>Antioxidative effects</td>
</tr>
<tr>
<td>8.6.4.3</td>
<td>Estrogen receptor activation</td>
</tr>
<tr>
<td>8.6.4.4</td>
<td>Inhibition of 11β-hydroxysteroid dehydrogenase</td>
</tr>
<tr>
<td>8.6.4.5</td>
<td>Iron and magnesium status</td>
</tr>
<tr>
<td>8.7</td>
<td>Summary and conclusions</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td>9</td>
<td>Coffee and Cardiovascular Diseases</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>Coffee components and CVD</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Caffeine</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Diterpenes: kahweol & cafestol</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Polyphenols</td>
</tr>
</tbody>
</table>
Contents

9.3 Early, transient, or acute effects of coffee consumption on CVD 183
 9.3.1 Tolerance or modification 184
9.4 Coffee metabolism and CVD: genetic influences 185
9.5 Long-term habitual coffee consumption and CVD 185
 9.5.1 Coffee and CHD 185
 9.5.1.1 Coffee consumption, blood pressure, and hypertension 186
 9.5.1.2 Coffee intake and risk of type 2 diabetes 187
 9.5.1.3 Coffee and atherosclerosis 188
 9.5.1.4 Coffee consumption and plasma homocysteine 188
9.6 Coffee consumption and heart failure 189
9.7 Coffee consumption and stroke 189
9.8 Summary 190
 References 190

10 Coffee and Cancers 197
 André Nkondjock
 10.1 Introduction 197
 10.2 Breast cancer 198
 10.3 Colorectal cancer 198
 10.4 Prostate cancer 199
 10.5 Bladder cancer 199
 10.6 Gastric cancer 200
 10.7 Ovarian cancer 201
 10.8 Pancreatic cancer 201
 10.9 Liver cancer 201
 10.10 Head and neck cancers 202
 10.11 Endometrial cancer 203
 10.12 Kidney cancer 204
 10.13 Brain cancer 204
 10.14 Cancer survival 204
 10.15 Conclusions 205
 References 205

11 Coffee Consumption and Mortality Risk 211
 Kemmyo Sugiyama, Shinichi Kuriyama, and Ichiro Tsuji
 11.1 Introduction 211
 11.2 Coffee consumption and all-cause mortality 211
 11.3 Coffee consumption and CVD mortality 221
 11.4 Coffee consumption and cancer mortality 222
 11.5 Possible mechanism of CVD mortality reduction by coffee 223
 11.6 Conclusions 223
 References 224

12 Is Coffee the Next Red Wine? Coffee Polyphenol and Cholesterol Efflux 227
 Harumi Kondo, Makoto Ayaori, and Katsunori Ikewaki
 12.1 High-density lipoprotein and cardiovascular disease 227
Contents

12.2 Coffee and cardiovascular disease 227
12.3 Coffee polyphenols 228
12.4 Coffee polyphenols and cholesterol efflux 229
References 230

13 Additional Positive Impacts on Health 233
Yi-Fang Chu and Yumin Chen
13.1 Coffee intake and reduced risk of suicide 233
13.2 Enhanced cognitive performance and mood 235
13.3 Coffee bioactive compounds 236
References 238

14 Epidemiological Evidence for Maternal Prenatal Coffee and Caffeine Consumption and Miscarriage Risk 243
Ronna L. Chan
14.1 Introduction 243
14.2 Coffee consumption during pregnancy: a three-decade-old concern 243
14.3 Evidence from the current literature 244
14.4 Methodological concerns and limitations for studies on coffee or caffeine exposure and miscarriage 247
14.4.1 Study design and subject recruitment 247
14.4.2 Exposure assessments 247
14.4.2.1 Quantifying individual caffeine exposure 247
14.4.2.2 Accounting for other sources of caffeine 249
14.4.2.3 Identifying critical timing of exposures 249
14.4.2.4 Maternal, fetal, and placental caffeine metabolism 250
14.4.2.5 Use of self-reporting versus biomarker data 251
14.4.3 Analytical approach: controlling for key confounders 251
14.4.3.1 Confounding by nausea and vomiting in pregnancy 251
14.4.3.2 Confounding by cigarette smoking 252
14.4.4 Determining gestational age, late recognition of fetal demise, and pregnancy outcome assessment 252
14.5 Risk for recurrent miscarriage 253
14.6 Conclusion, public health implications, and recommendations for future studies 254
References 255

15 Acrylamide in Coffee 259
Richard H. Stadler and Viviane Theurillat
15.1 Introduction 259
15.2 Methods of analysis 260
15.3 Occurrence in coffee and exposure estimates 260
15.4 Mechanisms of formation 262
15.5 Mitigation options 264
15.5.1 Agronomical stage (green bean) 264