Researchers of continuum mechanics of solids and structures and structural analysts in industry will find this book extremely insightful. It will also be of great interest to graduate and postgraduate students of mechanical, civil and aerospace engineering.

Key features:
- compares classical and modern approaches to beam theory, including classical well-known results related to Euler-Bernoulli and Timoshenko beam theories
- pays particular attention to typical applications related to bridge structures, aircraft wings, helicopters and propeller blades
- provides a number of numerical examples including typical Aerospace and Civil Engineering problems
- proposes many benchmark assessments to help the reader implement the CUF if they wish to do so
- accompanied by a companion website hosting dedicated software MUL2 that is used to obtain the numerical solutions in the book, allowing the reader to reproduce the examples given in the book as well as to solve other problems of their own

Cover design by Dan Jubb

www.wiley.com/go/carrera
Beam Structures
Contents

About the Authors ix
Preface xi
Introduction xiii
References xvii

1 Fundamental equations of continuous deformable bodies 1
1.1 Displacement, strain, and stresses 1
1.2 Equilibrium equations in terms of stress components and boundary conditions 3
1.3 Strain displacement relations 4
1.4 Constitutive relations: Hooke’s law 4
1.5 Displacement approach via principle of virtual displacements 5
References 8

2 The Euler–Bernoulli and Timoshenko theories 9
2.1 The Euler–Bernoulli model 9
2.1.1 Displacement field 10
2.1.2 Strains 12
2.1.3 Stresses and stress resultants 12
2.1.4 Elastica 15
2.2 The Timoshenko model 16
2.2.1 Displacement field 16
2.2.2 Strains 16
2.2.3 Stresses and stress resultants 17
2.2.4 Elastica 18
2.3 Bending of a cantilever beam: EBBT and TBT solutions 18
 2.3.1 EBBT solution 19
 2.3.2 TBT solution 20
References 22

3 A refined beam theory with in-plane stretching: the complete linear expansion case 23
 3.1 The CLEC displacement field 23
 3.2 The importance of linear stretching terms 24
 3.3 A finite element based on CLEC 28
Further reading 31

4 EBBT, TBT, and CLEC in unified form 33
 4.1 Unified formulation of CLEC 33
 4.2 EBBT and TBT as particular cases of CLEC 36
 4.3 Poisson locking and its correction 38
 4.3.1 Kinematic considerations of strains 38
 4.3.2 Physical considerations of strains 38
 4.3.3 First remedy: use of higher-order kinematics 39
 4.3.4 Second remedy: modification of elastic coefficients 39
References 42

5 Carrera Unified Formulation and refined beam theories 45
 5.1 Unified formulation 46
 5.2 Governing equations 47
 5.2.1 Strong form of the governing equations 47
 5.2.2 Weak form of the governing equations 54
References 63
Further reading 63

6 The parabolic, cubic, quartic, and N-order beam theories 65
 6.1 The second-order beam model, \(N = 2 \) 65
 6.2 The third-order, \(N = 3 \), and the fourth-order, \(N = 4 \), beam models 67
 6.3 N-order beam models 69
Further reading 71

7 CUF beam FE models: programming and implementation issue guidelines 73
 7.1 Preprocessing and input descriptions 74
 7.1.1 General FE inputs 74
 7.1.2 Specific CUF inputs 79
CONTENTS

7.2 FEM code
7.2.1 Stiffness and mass matrix 85
7.2.2 Stiffness and mass matrix numerical examples 91
7.2.3 Constraints and reduced models 95
7.2.4 Load vector 98
7.3 Postprocessing 100
7.3.1 Stresses and strains 101
References 103

8 Shell capabilities of refined beam theories 105
8.1 C-shaped cross-section and bending–torsional loading 105
8.2 Thin-walled hollow cylinder 107
8.2.1 Static analysis: detection of local effects due to a point load 109
8.2.2 Free-vibration analysis: detection of shell-like natural modes 112
8.3 Static and free-vibration analyses of an airfoil-shaped beam 116
8.4 Free vibrations of a bridge-like beam 119
References 121

9 Linearized elastic stability 123
9.1 Critical buckling load classic solution 123
9.2 Higher-order CUF models 126
9.2.1 Governing equations, fundamental nucleus 127
9.2.2 Closed form analytical solution 127
9.3 Examples 128
References 132

10 Beams made of functionally graded materials 133
10.1 Functionally graded materials 133
10.2 Material gradation laws 136
10.2.1 Exponential gradation law 136
10.2.2 Power gradation law 136
10.3 Beam modeling 139
10.4 Examples 141
References 148

11 Multi-model beam theories via the Arlequin method 151
11.1 Multi-model approaches 152
11.1.1 Mono-theory approaches 152
11.1.2 Multi-theory approaches 152
11.2 The Arlequin method in the context of the unified formulation 153
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Examples</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>167</td>
</tr>
<tr>
<td>12</td>
<td>Guidelines and recommendations</td>
<td>169</td>
</tr>
<tr>
<td>12.1</td>
<td>Axiomatic and asymptotic methods</td>
<td>169</td>
</tr>
<tr>
<td>12.2</td>
<td>The mixed axiomatic–asymptotic method</td>
<td>170</td>
</tr>
<tr>
<td>12.3</td>
<td>Load effect</td>
<td>174</td>
</tr>
<tr>
<td>12.4</td>
<td>Cross-section effect</td>
<td>175</td>
</tr>
<tr>
<td>12.5</td>
<td>Output location effect</td>
<td>177</td>
</tr>
<tr>
<td>12.6</td>
<td>Reduced models for different error inputs</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>181</td>
</tr>
</tbody>
</table>
About the Authors

Erasmo Carrera
After earning two degrees (Aeronautics, 1986, and Aerospace Engineering, 1988) at the Politecnico di Torino, Erasmo Carrera received his PhD degree in Aerospace Engineering jointly at the Politecnico di Milano, Politecnico di Torino, and Università di Pisa in 1991. He began working as a Researcher in the Department of Aerospace for the Politecnico di Torino in 1992 where he held courses on Missiles and Aerospace Structure Design, Plates and Shells, and the Finite Element Method. He became Associate Professor of Aerospace Structures and Computational Aeroelasticity in 2000, and Full Professor at the Politecnico di Torino in 2011. He has visited the Institute für Statik und Dynamik, Universität Stuttgart twice, the first time as a PhD student (six months in 1991) and then as Visiting Scientist under a GKKS Grant (18 months in 1995–1996). In the summers of 1996, 2003 and 2009, he was Visiting Professor at the ESM Department of Virginia Tech, at SUPMECA in Paris (France) and at the CRP TUDOR in Luxembourg, respectively. His main research topics are: inflatable structures, composite materials, finite elements, plates and shells, postbuckling and stability, smart structures, thermal stress, aeroelasticity, multibody dynamics, and the design and analysis of non-classical lifting systems. He is author of more than 300 articles on these topics, many of which have been published in international journals. He serves as referee for international journals, and as a contributing editor for Mechanics of Advanced Materials and Structures, Composite Structures and Journal of Thermal Stress.

Gaetano Giunta
Gaetano Giunta graduated in Aerospace Engineering at the Politecnico di Torino in 2004. In 2007 he defended his PhD thesis on “Deterministic and Stochastic Hierarchical Analysis of Failure and Vibration of Composites Plates and Shells” at the Politecnico di Torino. Dr Giunta carried out his post-doc at the Centre de Recherche Public Henri Tudor in Luxembourg and the Politecnico di Torino from February 2008 to January 2010. Currently he is an R&D Engineer at the
x ABOUT THE AUTHORS

Centre de Recherche Public Henri Tudor and is working on the project FNR CORE C09/MS/05 FUNCTIONALLY on “Functionally Graded Materials: Multi-Scale Modelling, Design and Optimisation” funded by the Fonds National de la Recherche Luxembourg (FNR). Dr Giunta would like to acknowledge the FNR for its support. His research covers the formulation of hierarchical analytical and finite element models for the static, free vibration, buckling and failure analysis of beam, plate, and shell structures made of conventional and advanced materials.

Marco Petrolo
Marco Petrolo is an Aerospace Engineer and a PhD student at the Politecnico di Torino. He has a BSc in Aerospace Engineering at the Politecnico di Torino and an MSc degree in Aerospace Engineering in a joint program between the Politecnico di Torino, TU Delft, and EADS. He is a Fulbright alumnus, and, as such, he has spent research periods at the San Diego State University and at the University of Michigan. His research activity is focused on the development of refined models for the structural and aeroelastic design of composite and metallic structures. He works in Professor Carrera’s research group in Turin on different aerospace applications, such as the structural analysis of composite lifting surfaces, multiscale problems, and nonlinear problems.
Preface

Beam models have made it possible to solve a large number of engineering problems over the last two centuries. Early developments, based on kinematic intuitions (bending theories), by pioneers such as Leonardo da Vinci, Euler, Bernoulli, Navier, and Barre de Saint Venant, have permitted us to consider the most general three-dimensional (3D) problem as a one-dimensional (1D) problem in which the unknowns only depend on the beam-axis position. These early theories are known as engineering beam theories (EBTs) or the Euler–Bernoulli beam theory (EBBT). Recent historical reviews have proposed that these theories should be referred to as the DaVinci–Euler–Bernoulli beam theory (DEBBT). The drawbacks of EBT are due to the intrinsic decoupling of bending and torsion (cross-section warping is not addressed by EBT) as well as to the difficulties involved in evaluating the additional five (normal and shear) stress components that are not provided by the Navier formula. Many torsion-beam theories which are effective for different types of beam sections are known. Many refinements of original EBT kinematics have been proposed. Amongst these, the one attributed to Timoshenko in which transverse shear deformations are included should be mentioned. The other refined theories mentioned herein are those by Vlasov and by Wagner, both of which lead to improved strain/stress field descriptions.

Over the last few decades, computational methods, in particular the finite element method, have made the use of classical beam theories much more successful and attractive. The possibility of solving complex framed structures with very different boundary conditions (mechanical and geometrical) has made it possible to analyze many complex problems involving thousands of degrees of freedom (DOFs) with acceptable accuracy. However, the difficulty of obtaining a complete stress/strain field in those sections with complex geometries or thin walls still remains an open question which can be addressed by refined and advanced beam theories.

During the last decade, the first author of this book proposed the Carrera Unified Formulation (CUF), which was first applied to plates and shells and then
recently extended to beams. The CUF permits one to develop a large number of beam theories with a variable number of displacement unknowns by means of a concise notation and by referring to a few fundamental nuclei. Higher-order beam theories can easily be implemented on the basis of the CUF, and the accuracy of a large variety of beam theories can be established in a hierarchical and/or axiomatic vs. asymptotic sense. A modern form of beam theories can therefore be constructed in a hierarchical manner. The number of unknown variables is a free parameter of the problem. A 3D stress/strain field can be obtained by an appropriate choice of these variables for any type of beam problem: compact sections, thin-walled sections, bending, torsion, shear, localized loadings, static and dynamic problems.

This book details classical and modern beam theories. Accuracy of the known theories is established by using the modern technique in the CUF. Various beam problems, in particular beam sections from civil to aerospace applications (wing airfoils), are considered in static and dynamic problems. Numerical results are obtained using the MUL2 software, which is available on the web site www.mul2.com.

www.wiley.com/go/carrera
Introduction

A brief introduction to the contents of the book is given here together with an overview of the milestone contributions to beam structure analysis.

Why another book on beams?

There is no need for another book on beam theories. Many books are, in fact, available, which have been written by some of the most eminent and talented scientists in the theory of elasticity and structures. It would be extremely difficult to write a better book. So, why a new book on beam theories? The reason is the following: this book presents a method to deal with beam theories that has never been considered before. As will be explained in the following chapters, the method introduced by the first author over the last decade for plates and shells is applied here to beams to build a large class of 1D (beam) hierarchical (variable kinematic) theories, which are based on automatic techniques to build governing equations and/or finite element matrices. The resulting theories permit one to deal with any section geometries subjected to any loading conditions and, at the same time, to reach quasi-3D solutions. Such results make the present book unique.

Review of historical contributions

Beam theories are extensively used to analyze the structural behavior of slender bodies, such as columns, arches, blades, aircraft wings, and bridges. The main advantage of beam models is that they reduce the 3D problem to a set of variables that only depends on the beam-axis coordinate. The 1D structural elements obtained are simpler and computationally more efficient than 2D (plate/shell) and 3D (solid) elements. This feature makes beam theories very attractive for the static and dynamic analysis of structures.

The classical, most frequently employed theories are those by Euler–Bernoulli (Bernoulli, 1751; Euler, 1744), de Saint-Venant (1856a,b), and Timoshenko (1921,