Edible Oil Processing
1 Composition and Properties of Edible Oils

Frank D. Gunstone

1.1 Introduction 1
1.2 Components of natural fats 3
 1.2.1 Fatty acids and glycerol esters 4
 1.2.2 Phospholipids 7
 1.2.3 Sterols 7
 1.2.4 Tocols and other phenolic compounds 9
 1.2.5 Chlorophyll 12
 1.2.6 Hydrocarbons 13
 1.2.6.1 Alkanes 13
 1.2.6.2 Squalene 13
 1.2.6.3 Carotenes 14
 1.2.6.4 Polycyclic aromatic hydrocarbons 15
 1.2.6.5 Contaminants and specifications 16
1.3 Fatty acid composition 16
1.4 Physical properties 19
 1.4.1 Polymorphism, crystal structure and melting point 19
 1.4.2 Density 21
 1.4.3 Viscosity 22
 1.4.4 Refractive index 22
 1.4.5 Solubility of gases in oils 22
 1.4.6 Other physical properties 24
1.5 Chemical properties 25
 1.5.1 Hydrogenation 25
1.5.2 Oxidation 25
1.5.3 Autoxidation 26
1.5.4 Photooxidation 27
1.5.5 Decomposition of hydroperoxides to short-chain compounds 28
1.5.6 Antioxidants 28
 1.5.6.1 Primary antioxidants 28
 1.5.6.2 Secondary antioxidants 29
1.5.7 Stereomutation 31
1.5.8 Double-bond migration and cyclisation 31
1.5.9 Hydrolysis 31
1.5.10 Ester formation 32
1.5.11 Methanolyis 32
1.5.12 Glycerolysis 32
1.5.13 Interesterification 33
1.6 Effect of processing on food oil components 33
References 34

2 Bulk Movement of Edible Oils 41
Wolf Hamm
2.1 Oil production and exports 41
2.2 Cargo damage 45
2.3 Quality of oils shipped 47
 2.3.1 Palm oil 47
 2.3.2 Soybean oil and other seed oils 47
 2.3.3 Shipment of oils intended for production of FAMEs 48
2.4 Codex Alimentarius 48
2.5 Oil shipments: systems and regulations 49
 2.5.1 The parcel tanker 49
 2.5.2 Parcel tanker categories: IMO classification 50
 2.5.3 Trade regulation: the role of the FOSFA and NIOP 50
2.6 Shore storage 52
2.7 Movement and storage costs 53
2.8 Refinery location 53
Acknowledgement 53
References 54

3 Production of Oils 55
Philippe van Doosselaere
3.1 Introduction 55
3.2 Seed handling and storage 56
 3.2.1 Seed arrival 56
 3.2.1.1 Seed weighing 56
 3.2.1.2 Sampling 57
 3.2.2 Seed reception and precleaning 57
 3.2.3 Storage 58
3.3 Preparation of oilseeds 60
 3.3.1 Reason for and purpose of preparation 60

References
3.3.2 Milling defect 61
3.4 Preparation of soybean 61
 3.4.1 Cleaning and weighing 62
 3.4.2 Cracking 64
 3.4.3 Cooking–conditioning 65
 3.4.4 Flaking 65
 3.4.5 Expander 66
 3.4.6 Soybean dehulling 68
 3.4.6.1 Traditional process 68
 3.4.6.2 Hot dehulling process 69
3.5 Preparation and pressing of rapeseed (canola) 69
 3.5.1 Preparation 70
 3.5.2 Cooking 71
 3.5.3 Mechanical pressing 71
 3.5.4 Press oil clarification 75
 3.5.5 Press cake treatment 76
3.6 Preparation and pressing of sunflower seed 77
3.7 Full pressing 78
 3.7.1 Cold pressing 79
 3.7.2 Double pressing 80
 3.7.3 Cake treatment 80
3.8 Oil from other seeds 81
 3.8.1 Cottonseed 81
 3.8.2 Corn germ 82
 3.8.3 Coconut or copra oil 83
 3.8.4 Linseed (flaxseed) 83
 3.8.5 Safflower 84
 3.8.6 Peanut (groundnut) 85
 3.8.7 Rice bran 86
 3.8.8 Sesame seed 87
3.9 Olive oil production 87
 3.9.1 Pressing 89
 3.9.2 Centrifugation 90
 3.9.3 Olive pomace extraction 90
3.10 Palm oil production 91
 3.10.1 Before reaching the mill 92
 3.10.2 Sterilisation 93
 3.10.3 Threshing 93
 3.10.4 Pressing 94
 3.10.5 Crude oil clarification 94
 3.10.6 Oil drying 94
 3.10.7 Fibre–fruit separation 95
 3.10.8 Nut conditioning 95
 3.10.9 Nut cracking installation 95
 3.10.10 Kernel separation 95
 3.10.11 Uses of secondary palm fruit products 95
 3.10.11.1 Palm kernel meal 95
 3.10.11.2 Fibres and shell 96
4 Solvent Extraction
Timothy G. Kemper

4.1 Introduction
4.2 Solvent extractor
 4.2.1 Contact time
 4.2.2 Particle thickness
 4.2.3 Extractor temperature
 4.2.4 Miscella flux rate
 4.2.5 Number of miscella stages
 4.2.6 Solvent retention
4.3 Meal desolventiser toaster
 4.3.1 Predesolventising trays
 4.3.2 Countercurrent trays
 4.3.3 Sparge tray
4.4 Meal dryer cooler
 4.4.1 Steam-drying trays
 4.4.2 Air-drying trays
 4.4.3 Air-cooling trays
4.5 Miscella distillation system
4.6 Solvent recovery system
4.7 Heat recovery
References

5 Edible Oil Refining: Current and Future Technologies
Wim De Greyt

5.1 Introduction
5.2 Next-generation chemical refining with nanoneutralisation
5.3 Enzymatic degumming: a missing link in the physical refining of soft oils?
5.4 Bleaching: from single-stage colour removal to multistage adsorptive purification
5.5 Deodorisation: much more than just a process for the removal of off-flavours
5.6 Short-path distillation and supercritical processing: refining technologies for the future?
References

6 Oil Modification Processes
Marc Kellens and Gijs Calliauw

6.1 Introduction
6.2 Hydrogenation
 6.2.1 Historical perspective
 6.2.2 Principle
 6.2.3 Process parameters
 6.2.3.1 Hydrogen pressure
 6.2.3.2 Temperature
 6.2.3.3 Catalyst
 6.2.4 Process design
References
CONTENTS

6.2.5 Future for hydrogenation technology 163
6.2.5.1 Smarter combinations of the conventional technology 163
6.2.5.2 Alternative catalysts 163
6.2.5.3 Advanced process technology 164
6.2.5.4 Summary 166

6.3 Interesterification 166
6.3.1 Historical perspective 166
6.3.2 Principle 167
6.3.3 Process parameters
6.3.3.1 Oil quality 169
6.3.3.2 Catalyst 169
6.3.3.3 Oil losses 170
6.3.4 Process design
6.3.4.1 Processed product quality 173
6.3.5 Future for interesterification technology 174

6.4 Dry fractionation 175
6.4.1 Historical perspective 176
6.4.2 Principle 177
6.4.3 Process parameters
6.4.3.1 Cooling speed 180
6.4.3.2 Agitation 183
6.4.4 Process design
6.4.4.1 Crystalliser design 183
6.4.4.2 Filter design 184
6.4.4.3 Plant design 185
6.4.5 Future for fractionation technology 188
6.4.5.1 Optimised crystalliser designs 188
6.4.5.2 High-pressure filtrations 189
6.4.5.3 Continuous fractional crystallisation 190
6.4.5.4 Alternative multistage processes for specialty fats production 191
6.4.6 Summary 195

References 195

7 Enzyme Processing 197
David Cowan

7.1 Introduction 197
7.1.1 Objectives of enzyme processing 198

7.2 Enzyme applications before oil refining 199
7.2.1 Enzyme-assisted pressing 199
7.2.2 Enzymatic degumming 200
7.2.3 Enzymatic degumming process (phospholipase A₁) 202
7.2.4 Other phospholipases 205
7.2.5 Oil recovery from gums 205
7.2.6 Oil remediation 206

7.3 Applications within edible oil modification 208
7.3.1 Industrial-scale enzymatic interesterification 209
CONTENTS

9.5.4 Oil processing link tables 263
9.5.5 Food safety control points 264
References 266

10 Oil Processing Design Basics 267
Gerrit van Duijn and Gerrit den Dekker

10.1 Introduction 267
10.2 Refining and modification process routes for most common oil types 268
10.2.1 Process step definitions 268
10.2.1.1 Degumming or water degumming (degummed) 268
10.2.1.2 Deep degumming (ddg) 268
10.2.1.3 Neutralisation (n) 269
10.2.1.4 One-step bleaching (osb) 269
10.2.1.5 Two-step bleaching (tsb) 269
10.2.1.6 Deodorisation (d) 269
10.2.1.7 Deodorisation/stripping (ds) 269
10.2.1.8 Hydrogenation (h) 269
10.2.1.9 Interesterification (ie) 270
10.2.1.10 Dewaxing/winterisation (wi) 270
10.2.1.11 Dry fractionation (df) 270
10.2.1.12 Soapstock splitting (ss) 270
10.2.2 Process routes for straight refined oils and fats 270
10.2.3 Process routes pre- and post-hydrogenation 272
10.2.4 Process routes pre- and post-IEC 273
10.2.5 Process routes pre- and post-IEE 274
10.2.6 Process routes in dry fractionation and dewaxing 274
10.3 Oil processing block diagram design 274
10.3.1 Standard oil processing block diagrams 274
10.3.2 Batch and continuous processes 275
10.3.2.1 Batch processes 276
10.3.2.2 Continuous processes 276
10.3.3 Refining of straight oils and fats 277
10.3.3.1 Chemical refining 277
10.3.3.2 Physical refining 278
10.3.4 Refining combined with hydrogenation 279
10.3.5 Refining combined with interesterification 279
10.3.6 Refining and dewaxing 281
10.3.7 Refining and fractionation 281
10.3.8 Production of trans-free hard fats 281
10.4 Effective equipment capacity 283
10.4.1 Example: calculation of effective times for 5- and 7-days-a-week operations 285
10.4.1.1 5 days a week 285
10.4.1.2 7 days a week 285
10.5 Tank park design rules 285
10.5.1 Storage capacity 285
10.5.2 Degradation during storage 286
10.5.2.1 Hydrolysis 287
List of Contributors

Dr Arjen Bot, Unilever R&D Vlaardingen, Vlaardingen, The Netherlands
Dr Gius Calliauw, Development Manager Modification, Desmet Ballestra Oils and Fats, Zaventem, Belgium
Dr David Cowan, CS Application Scientist/Global Coordinator, Novozymes, Chesham, UK
Dr Wim De Greyt, R&D Manager, Desmet Ballestra Oils and Fats, Zaventem, Belgium
Gerrit den Dekker, Retired, Unilever R&D Vlaardingen, Vlaardingen, The Netherlands
Professor Eckhard Flötter, Technical University Berlin, Berlin, Germany
Frank D. Gunstone, Professor emeritus, St Andrews University, St Andrews, UK
Wolf Hamm, Retired, Harpenden, UK
Dr Marc Kellens, Group Technical Director, Desmet Ballestra Oils and Fats, Zaventem, Belgium
Timothy G. Kemper, Global Technical Director, Solvent Extraction, Desmet Ballestra, Marietta, GA, USA
Philippe van Dooselaere, Retired (formerly Product Manager, Crushing, Desmet Ballestra Oils and Fats), Brussels, Belgium
Dr Gerrit van Duin, Maas Refinery, Rotterdam, The Netherlands
Mar Verhoeff, Laboratory Dr A. Verwey B.V., Rotterdam, The Netherlands