DESIGN OF SMART POWER GRID RENEWABLE ENERGY SYSTEMS

ALI KEYHANI
DESIGN OF
SMART POWER
GRID RENEWABLE
ENERGY SYSTEMS
DESIGN OF SMART POWER GRID RENEWABLE ENERGY SYSTEMS

ALI KEYHANI

IEEE

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
I dedicate this book to my father,
Dr. Mohammed Hossein Keyhani
CONTENTS

FOREWORD

PREFACE

ACKNOWLEDGMENTS

1 ENERGY AND CIVILIZATION

1.1 Introduction / 1
1.2 Fossil Fuel / 1
1.3 Depletion of Energy Resources / 2
1.4 An Alternative Energy Source: Nuclear Energy / 5
1.5 Global Warming / 5
1.6 The Age of the Electric Power System / 9
1.7 Green and Renewable Energy Sources / 10
 1.7.1 Hydrogen / 10
 1.7.2 Solar and Photovoltaic / 11
 1.7.3 Geothermal / 12
 1.7.4 Biomass / 12
 1.7.5 Ethanol / 13
1.8 Energy Units and Conversions / 13
1.9 Estimating the Cost of Energy / 17
1.10 Conclusion / 20

Problems / 20

References / 22
2 POWER GRIDS

2.1 Introduction / 24
2.2 Electric Power Grids / 25
 2.2.1 Background / 25
 2.2.2 The Construction of a Power Grid System / 26
2.3 The Basic Concepts of Power Grids / 28
 2.3.1 Common Terms / 28
 2.3.2 Calculating Power Consumption / 30
2.4 Load Models / 45
2.5 Transformers in Electric Power Grids / 51
 2.5.1 A Short History of Transformers / 51
 2.5.2 Transmission Voltage / 51
 2.5.3 Transformers / 52
2.6 Modeling a Microgrid System / 56
 2.6.1 The Per Unit System / 57
2.7 Modeling Three-Phase Transformers / 68
2.8 Tap Changing Transformers / 71
2.9 Modeling Transmission Lines / 73

Problems / 86
References / 90

3 MODELING CONVERTERS IN MICROGRID POWER SYSTEMS

3.1 Introduction / 92
3.2 Single-Phase DC/AC Inverters with Two Switches / 93
3.3 Single-Phase DC/AC Inverters with a Four-Switch Bipolar
 Switching Method / 105
 3.3.1 Pulse Width Modulation with Unipolar Voltage Switching for
 a Single-Phase Full-Bridge Inverter / 109
3.4 Three-Phase DC/AC Inverters / 111
3.5 Pulse Width Modulation Methods / 112
 3.5.1 The Triangular Method / 112
 3.5.2 The Identity Method / 117
3.6 Analysis of DC/AC Three-Phase Inverters / 118
3.7 Microgrid of Renewable Energy Systems / 129
3.8 The DC/DC Converters in Green Energy Systems / 132
 3.8.1 The Step-Up Converter / 133
 3.8.2 The Step-Down Converter / 143
 3.8.3 The Buck-Boost Converter / 149
3.9 Rectifiers / 154
3.10 Pulse Width Modulation Rectifiers / 159
3.11 A Three-Phase Voltage Source Rectifier Utilizing Sinusoidal
 PWM Switching / 160
3.12 The Sizing of an Inverter for Microgrid Operation / 166
3.13 The Sizing of a Rectifier for Microgrid Operation / 168
3.14 The Sizing of DC/DC Converters for Microgrid Operation / 168
Problems / 169
References / 174

4 SMART POWER GRID SYSTEMS / 175

4.1 Introduction / 175
4.2 Power Grid Operation / 176
4.3 The Vertically and Market-Structured Utility / 182
4.4 Power Grid Operations Control / 185
4.5 Load-Frequency Control / 186
4.6 Automatic Generation Control / 192
4.7 Operating Reserve Calculation / 197
4.8 The Basic Concepts of a Smart Power Grid / 197
4.9 The Load Factor / 204
 4.9.1 The Load Factor and Real-Time Pricing / 207
4.10 A Cyber-Controlled Smart Grid / 209
4.11 Smart Grid Development / 213
4.12 Smart Microgrid Renewable Green Energy Systems / 214
4.13 A Power Grid Steam Generator / 221
4.14 Power Grid Modeling / 232
Problems / 239
References / 245
Additional Resources / 246

5 MICROGRID SOLAR ENERGY SYSTEMS / 248

5.1 Introduction / 248
5.2 The Solar Energy Conversion Process: Thermal Power Plants / 252
5.3 Photovoltaic Power Conversion / 254
5.4 Photovoltaic Materials / 254
5.5 Photovoltaic Characteristics / 256
5.6 Photovoltaic Efficiency / 259
5.7 The Design of Photovoltaic Systems / 263
5.8 The Modeling of a Photovoltaic Module / 277
5.9 The Measurement of Photovoltaic Performance / 279
CONTENTS

7.8 The Bus Impedance Matrix Model / 409
7.9 Formulation of the Load Flow Problem / 411
7.10 The Gauss–Seidel Y_{Bus} Algorithm / 413
7.11 The Gauss–Seidel Z_{Bus} Algorithm / 418
7.12 Comparison of the Y_{Bus} and Z_{Bus} Power Flow Solution Methods / 424
7.13 The Synchronous and Asynchronous Operation of Microgrids / 425
 7.14.1 The Newton–Raphson Algorithm / 430
 7.14.2 General Formulation of the Newton–Raphson Algorithm / 435
 7.14.3 The Decoupled Newton–Raphson Algorithm / 438
7.15 The Fast Decoupled Load Flow Algorithm / 439
7.16 Analysis of a Power Flow Problem / 441
Problems / 453
References / 465
Additional Resources / 465

8 POWER GRID AND MICROGRID FAULT STUDIES 467

8.1 Introduction / 467
8.2 Power Grid Fault Current Calculation / 468
8.3 Symmetrical Components / 472
8.4 Sequence Networks for Power Generators / 477
8.5 The Modeling of a Photovoltaic Generating Station / 480
8.6 Sequence Networks for Balanced Three-Phase Transmission Lines / 481
8.7 Ground Current Flow in Balanced Three-Phase Transformers / 484
8.8 Zero Sequence Network / 485
 8.8.1 Transformers / 485
 8.8.2 Load Connections / 487
 8.8.3 Power Grid / 487
8.9 Fault Studies / 491
 8.9.1 Balanced Three-Phase Fault Analysis / 494
 8.9.2 Unbalanced Faults / 512
 8.9.3 Single Line to Ground Faults / 512
 8.9.4 Double Line to Ground Faults / 514
 8.9.5 Line to Line Faults / 517
Problems / 531
References / 536
APPENDIX A	COMPLEX NUMBERS	537
APPENDIX B	TRANSMISSION LINE AND DISTRIBUTION TYPICAL DATA	540
APPENDIX C	ENERGY YIELD OF A PHOTOVOLTAIC MODULE AND ITS ANGLE OF INCIDENCE	544
APPENDIX D	WIND POWER	556
INDEX	560	
It is an honor for me to add my comments to a very important book by Professor Ali Keyhani, *Design of Smart Grid Renewable Energy Systems*.

The restructuring of the electric power industry was a critical step for individual stakeholders, facilitating their wide participation in the production, delivery, and utilization of energy. The “smart grid” has further offered alternatives to participants looking to enhance the reliability, sustainability, and capability for customer choices in energy systems. The smart grid has made it possible to set up microgrids that could be operated as stand-alone islands in critical operating conditions. Such small installations can enhance the reliability of regional electric power systems when the larger grid is faced with major contingencies. There are several practical examples of microgrid installations which have demonstrated that the use of smart switches in distributed power grids could reduce the number and the duration of outages.

In addition, the smart grid allows microgrids to optimize the use of volatile and intermittent renewable energy resources and enhance the sustainability of regional power systems. The applications of solar photovoltaics, which mostly follow the daily load profile for power generation, on-site or local wind energy, along with storage devices for microgrid installations could provide an inexpensive and sustainable means of supplying microgrid loads. The principles of widespread utilization of energy storage can also be found in the emerging market of plug-in electric vehicles, which would utilize wind energy at off-peak hours. Such microgrid applications could also eliminate the need for extensive additions of high voltage lines for the transmission of renewable energy across densely populated regions of the world.

However, the evolutions in the electric power industry that I believe will truly revolutionize the way we deliver electricity to individual consumers are