Wiley Handbooks in
FINANCIAL ENGINEERING AND ECONOMETRICS

Advisory Editor
Ruey S. Tsay
The University of Chicago Booth School of Business, USA

The dynamic and interaction between financial markets around the world have changed dramatically under economic globalization. In addition, advances in communication and data collection have changed the way information is processed and used. In this new era, financial instruments have become increasingly sophisticated and their impacts are far-reaching. The recent financial (credit) crisis is a vivid example of the new challenges we face and continue to face in this information age. Analytical skills and ability to extract useful information from mass data, to comprehend the complexity of financial instruments, and to assess the financial risk involved become a necessity for economists, financial managers, and risk management professionals. To master such skills and ability, knowledge from computer science, economics, finance, mathematics and statistics is essential. As such, financial engineering is cross-disciplinary, and its theory and applications advance rapidly.

The goal of this Handbook Series is to provide a one-stop source for students, researchers, and practitioners to learn the knowledge and analytical skills they need to face today's challenges in financial markets. The Series intends to introduce systematically recent developments in different areas of financial engineering and econometrics. The coverage will be broad and thorough with balance in theory and applications. Each volume will be edited by leading researchers and practitioners in the area and covers state-of-the-art methods and theory of the selected topic.

Published Wiley Handbooks in Financial Engineering and Econometrics
Viens, Mariani, and Florescu · Handbook of Modeling High-Frequency Data in Finance

Forthcoming Wiley Handbooks in Financial Engineering and Econometrics
Bali and Engle · Handbook of Asset Pricing
Bauwens, Hafner, and Laurent · Handbook of Volatility Models and Their Applications
Brandimarte · Handbook of Monte Carlo Simulation
Chan and Wong · Handbook of Financial Risk Management
Cruz, Peters, and Shevchenko · Handbook of Operational Risk
Sarno, James, and Marsh · Handbook of Exchange Rates
Szylar · Handbook of Market Risk
Contents

Preface xi
Contributors xiii

Part One
Analysis of Empirical Data 1

1 Estimation of NIG and VG Models for High Frequency Financial Data 3
José E. Figueroa-López, Steven R. Lancette, Kiseop Lee, and Yanhui Mi
1.1 Introduction, 3
1.2 The Statistical Models, 6
1.3 Parametric Estimation Methods, 9
1.4 Finite-Sample Performance via Simulations, 14
1.5 Empirical Results, 18
1.6 Conclusion, 22
References, 24

2 A Study of Persistence of Price Movement using High Frequency Financial Data 27
Dragos Bozdog, Ionuț Florescu, Khaldoun Khashanah, and Jim Wang
2.1 Introduction, 27
2.2 Methodology, 29
2.3 Results, 35
2.4 Rare Events Distribution, 41
2.5 Conclusions, 44
 References, 45

3 Using Boosting for Financial Analysis and Trading 47
 Germán Creamer
 3.1 Introduction, 47
 3.2 Methods, 48
 3.3 Performance Evaluation, 53
 3.4 Earnings Prediction and Algorithmic Trading, 60
 3.5 Final Comments and Conclusions, 66
 References, 69

4 Impact of Correlation Fluctuations on Securitized structures 75
 Eric Hillebrand, Ambar N. Sengupta, and Junyue Xu
 4.1 Introduction, 75
 4.2 Description of the Products and Models, 77
 4.3 Impact of Dynamics of Default Correlation on Low-Frequency Tranches, 79
 4.4 Impact of Dynamics of Default Correlation on High-Frequency Tranches, 87
 4.5 Conclusion, 92
 References, 94

5 Construction of Volatility Indices Using A Multinomial Tree Approximation Method 97
 Dragos Bozdog, Ionuț Florescu, Khaledoun Khashanah, and Hongwei Qiu
 5.1 Introduction, 97
 5.2 New Methodology, 99
 5.3 Results and Discussions, 101
 5.4 Summary and Conclusion, 110
 References, 115
PART TWO

Long Range Dependence Models

6 Long Correlations Applied to the Study of Memory Effects in High Frequency (TICK) Data, the Dow Jones Index, and International Indices 119

Ernest Barany and Maria Pia Beccar Varela

6.1 Introduction, 119
6.2 Methods Used for Data Analysis, 122
6.3 Data, 128
6.4 Results and Discussions, 132
6.5 Conclusion, 150

References, 160

7 Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales 163

Alec N. Kercheval and Yang Liu

7.1 Introduction, 163
7.2 The Skewed t Distributions, 165
7.3 Risk Forecasts on a Fixed Timescale, 176
7.4 Multiple Timescale Forecasts, 185
7.5 Backtesting, 188
7.6 Further Analysis: Long-Term GARCH and Comparisons using Simulated Data, 203
7.7 Conclusion, 216

References, 217

8 Parameter Estimation and Calibration for Long-Memory Stochastic Volatility Models 219

Alexandra Chronopoulou

8.1 Introduction, 219
8.2 Statistical Inference Under the LMSV Model, 222
8.3 Simulation Results, 227
8.4 Application to the S&P Index, 228
8.5 Conclusion, 229
 References, 230

PART THREE
Analytical Results

9 A Market Microstructure Model of Ultra High Frequency Trading 235
Carlos A. Ulibarri and Peter C. Anselmo
9.1 Introduction, 235
9.2 Microstructural Model, 237
9.3 Static Comparisons, 239
9.4 Questions for Future Research, 241
 References, 242

10 Multivariate Volatility Estimation with High Frequency Data Using Fourier Method 243
Maria Elvira Mancino and Simona Sanfelici
10.1 Introduction, 243
10.2 Fourier Estimator of Multivariate Spot Volatility, 246
10.3 Fourier Estimator of Integrated Volatility in the Presence of Microstructure Noise, 252
10.4 Fourier Estimator of Integrated Covariance in the Presence of Microstructure Noise, 263
10.5 Forecasting Properties of Fourier Estimator, 272
10.6 Application: Asset Allocation, 286
 References, 290

11 The “Retirement” Problem 295
Cristian Pasarica
11.1 Introduction, 295
11.2 The Market Model, 296
11.3 Portfolio and Wealth Processes, 297
11.4 Utility Function, 299
11.5 The Optimization Problem in the Case $\pi_{(\tau,T]} \equiv 0$, 299
11.6 Duality Approach, 300
11.7 Infinite Horizon Case, 305
 References, 324
Contents

12 Stochastic Differential Equations and Levy Models with Applications to High Frequency Data 327
Ernest Barany and Maria Pia Beccar Varela
12.1 Solutions to Stochastic Differential Equations, 327
12.2 Stable Distributions, 334
12.3 The Levy Flight Models, 336
12.4 Numerical Simulations and Levy Models: Applications to Models Arising in Financial Indices and High Frequency Data, 340
12.5 Discussion and Conclusions, 345
References, 346

13 Solutions to Integro-Differential Parabolic Problem Arising on Financial Mathematics 347
Maria C. Mariani, Marc Salas, and Indranil SenGupta
13.1 Introduction, 347
13.2 Method of Upper and Lower Solutions, 351
13.3 Another Iterative Method, 364
13.4 Integro-Differential Equations in a Lévy Market, 375
References, 380

Maria C. Mariani, Emmanuel K. Ncheuguim, and Indranil SenGupta
14.1 Model with Transaction Costs, 383
14.2 Review of Functional Analysis, 386
14.3 Solution of the Problem (14.2) and (14.3) in Sobolev Spaces, 391
14.4 Model with Transaction Costs and Stochastic Volatility, 400
14.5 The Analysis of the Resulting Partial Differential Equation, 408
References, 418

Index 421
Preface

This handbook is a collection of articles that describe current empirical and analytical work on data sampled with high frequency in the financial industry.

In today’s world, many fields are confronted with increasingly large amounts of data. Financial data sampled with high frequency is no exception. These staggering amounts of data pose special challenges to the world of finance, as traditional models and information technology tools can be poorly suited to grapple with their size and complexity. Probabilistic modeling and statistical data analysis attempt to discover order from apparent disorder; this volume may serve as a guide to various new systematic approaches on how to implement these quantitative activities with high-frequency financial data.

The volume is split into three distinct parts. The first part is dedicated to empirical work with high frequency data. Starting the handbook this way is consistent with the first type of activity that is typically undertaken when faced with data: to look for its stylized features. The book’s second part is a transition between empirical and theoretical topics and focuses on properties of long memory, also known as long range dependence. Models for stock and index data with this type of dependence at the level of squared returns, for instance, are coming into the mainstream; in high frequency finance, the range of dependence can be exacerbated, making long memory an important subject of investigation. The third and last part of the volume presents new analytical and simulation results proposed to make rigorous sense of some of the difficult modeling questions posed by high frequency data in finance. Sophisticated mathematical tools are used, including stochastic calculus, control theory, Fourier analysis, jump processes, and integro-differential methods.

The editors express their deepest gratitude to all the contributors for their talent and labor in bringing together this handbook, to the many anonymous referees who helped the contributors perfect their works, and to Wiley for making the publication a reality.

Frederi Viens
Maria C. Mariani
Ionuț Florescu

Washington, DC, El Paso, TX, and Hoboken, NJ
April 1, 2011
Contributors

Peter C. Anselmo, New Mexico Institute of Mining and Technology, Socorro, NM

Ernest Barany, Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM

Maria Pia Beccar Varela, Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX

Dragos Bozdog, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ

Alexandra Chronopoulou, INRIA, Nancy, France

Germán Creamer, Howe School and School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ

José E. Figueroa-López, Department of Statistics, Purdue University, West Lafayette, IN

Ionuţ Florescu, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ

Eric Hillebrand, Department of Economics, Louisiana State University, Baton Rouge, LA

Alec N. Kercheval, Department of Mathematics, Florida State University, Tallahassee, FL

Khaldoun Khashanah, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ

Steven R. Lancette, Department of Statistics, Purdue University, West Lafayette, IN

Kiseop Lee, Department of Mathematics, University of Louisville, Louisville, KY; Graduate Department of Financial Engineering, Ajou University, Suwon, South Korea

Yang Liu, Department of Mathematics, Florida State University, Tallahassee, FL