PATHOLOGICAL PAIN: FROM MOLECULAR TO CLINICAL ASPECTS
PATHOLOGICAL PAIN: FROM MOLECULAR TO CLINICAL ASPECTS
The Novartis Foundation is an international scientific and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientific research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-making foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation’s headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines. Media relations are fostered by regular press conferences and by articles prepared by the Foundation’s Science Writer in Residence. The Foundation offers accommodation and meeting facilities to visiting scientists and their societies.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk

The Novartis (formerly Ciba-Geigy) Foundation (Japan) for the Promotion of Science was established in 1987 under the authorization of the Ministry of Education, Science and Culture as part of the continuing commitment by Ciba-Geigy (now Novartis) AG, Basel, Switzerland, to contribute to human welfare. The Foundation’s mission is to fund innovative research in Japan and support international research meetings in the hope that this will promote the development of the core, scientific technologies necessary for the betterment of the human condition.

Information on the Foundation can be found at http://www.novartisfoundation.jp
Contents

Symposium on Pathological pain: from molecular to clinical aspects, held at the Novartis Tsukuba Research Institute, Tsukuba, Japan, in collaboration with the Novartis Foundation (Japan) for the Promotion of Science, 30 September–2 October 2003

Editors: Derek J. Chadwick (Organizer) and Jamie Goode

This symposium is based on a proposal made by Takao Kumazawa and Akimichi Kaneko

Takao Kumazawa Chair’s introduction 1

Makoto Tominaga, Mitsuko Numazaki, Tohko Iida, Tomoko Moriyama, Kazuya Togashi, Tomohiro Higashi, Namie Murayama and Tomoko Tominaga Regulation mechanisms of vanilloid receptors 4 Discussion 12

Jin Mo Chung and Kyungsoon Chung Sodium channels and neuropathic pain 19 Discussion 27

John N. Wood, Bjarke Abrahamsen, Mark D. Baker, James D. Boorman, Emmanuelle Donier, Liam J. Drew, Mohammed A. Nassar, Kenji Okuse, Anjan Seereeram, Caroline L. Stirling and Jing Zhao Ion channel activities implicated in pathological pain 32 Discussion 40

General discussion I 47

Kazuhide Inoue, Makoto Tsuda and Schuichi Koizumi Chronic pain and microglia: the role of ATP 55 Discussion 64

Stephen B. McMahon and William B. J. Cafferty Neurotrophic influences on neuropathic pain 68 Discussion 92
Koichi Noguchi, Koichi Obata and Yi Dai Changes in DRG neurons and spinal excitability in neuropathy 103
Discussion 110

M. Yoshimura, H. Furue, T. Nakatsuka, T. Matayoshi and T. Katafuchi Functional reorganization of the spinal pain pathways in developmental and pathological conditions 116
Discussion 124

Min Zhuo Central plasticity in pathological pain 132
Discussion 145

General discussion II 149

Hiroshi Ueda Anti-opioid systems in morphine tolerance and addiction — locus-specific involvement of nociceptin and the NMDA receptor 155
Discussion 162

Alan R. Gintzler and Sumita Chakrabarti Chronic morphine-induced plasticity among signalling molecules 167
Discussion 176

Jianren Mao Opioid tolerance and neuroplasticity 181
Discussion 187

General discussion III 191

Patrick W. Mantyh A mechanism-based understanding of bone cancer pain 194
Discussion 214

Ralf Baron Mechanistic and clinical aspects of complex regional pain syndrome (CRPS) 220
Discussion 233

A. Vania Apkarian Cortical pathophysiology of chronic pain 239
Discussion 245

Final discussion Translating basic research to the clinic 256

Index of contributors 262
Subject index 264
Participants

A. Vania Apkarian Northwestern University Medical School, Department of Physiology, 303 E Chicago Ave/Tarry Building 5-703, Chicago, IL 60611, USA

Ralf Baron Department of Neurology, University Hospital, Christian-Albrechts-University, Niemannsweg 147, 24105 Kiel, Germany

Carlos Belmonte Instituto de Neurociencias de Alicante, Universidad Miguel Hernandez-CSIC, Campus de San Juan, Aptdo. 18, 03550 San Juan de Alicante, Spain

Jin Mo Chung Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1069, USA

Marshall Devor Institute of Life Sciences & Center for Research on Pain, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Andy Dray AstraZeneca Research & Development — Montreal, 7171 Frederick-Banting, Ville St Laurent, Montreal, Quebec H4S 1Z9, Canada

Alan R. Gintzler Department of Biochemistry, State University of New York, Downstate Medical Center, Box 8, 450 Clarkson Avenue, Brooklyn, NY 11203, USA

Kazuhide Inoue Graduate School of Pharmaceutical Sciences, Division of Molecular and Cellular Physiology, National Institute of Health Sciences, Kyushu University, Kamiyoga 1-18-1, Setagaya, Tokyo 158-8501, Japan

Akimichi Kaneko Seijoh University, 2-172 Fukinodai, Tokai City, Aichi Ken 476-8588, Japan

Takao Kumazawa (Chair) Professor and Chairman, Department of Algesiology, Aichi Medical University, Nagakute-cho, Aichi 480-1195, Japan
Yasushi Kuraishi Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, Toyama, 930-0194, Japan

Annika B. Malmberg Elan Pharmaceuticals, 800 Gateway Boulevard, South San Francisco, CA 94080, USA

Patrick W. Mantyh Departments of Preventive Science, Neuroscience and Psychiatry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA

Jianren Mao Pain Center, Massachusetts General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA

Stephen B. McMahon Sensory Function, Centre for Neuroscience, Hodgkin Building, King’s College London, Guy’s Campus, London Bridge, London SE1 1UL, UK

Koichi Noguchi Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan

Uhtaek Oh Seoul National University, College of Pharmacy, Kwanak, Shinlim 9-dong, 151-742 Seoul, Korea

Edward R. Perl Department of Cell and Molecular Physiology, University of North Carolina, School of Medicine, Campus Box 7545, Chapel Hill, NC 27514-7545, USA

Peter W. Reeh Institute für Physiologie & Experimentelle Pathophysiologie, Universität Erlangen-Nürnberg, Universitätsstraße 17, D-91054 Erlangen, Germany

Jörn Schattschneider Neurologische Klinik der Universitätskliniken Kiel, Niemnnsweg 147, Kiel, D-24105, Germany

Makoto Tominaga Department of Physiology, Mie University School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan

Hiroshi Ueda Division of Molecular Pharmacology & Neuroscience, Nagasaki University, Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
PARTICIPANTS

John N. Wood Department of Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK

Megumi Yoshimura Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidasi, Higashi-ku, Fukuoka, 812-8582, Japan

Xu Zhang Institute of Neurosciences, Shanghai Institute of Life Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China

Min Zhuo Department of Physiology, University of Toronto, Medical Science Building, Room #3342, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
Chair’s introduction

Takao Kumazawa

Department of Algesiology, Aichi Medical University, Nagakute-cho, Aichi 480-1195, Japan

It is my great pleasure that we are holding this symposium on pathological pain here in Japan, as part of the Novartis Symposium series, a series that has had a brilliant history for more than half a century. As Chair of this symposium, I want to express my deep gratitude to all of the participants, who are joining here from all over the world, and to the Novartis Foundation for its generous support.

Before the 1970s, we learned much about pain from publications arising from two previous meetings on pain organized by the Foundation (then known as the Ciba Foundation): namely, *Pain and itch* in 1959 and *Touch, heat and pain* in 1966 (Ciba Foundation 1959, 1966). To my knowledge, except for these two meetings, there are no Novartis symposia focusing on the subject of pain. However, from the end of 1960s until now, pain research has undergone an explosive development. As all of you know, Dr Perl, one of the participants at this symposium, has played an important role in the development of the study of pain, from the pioneering early days until the present.

Over the last three decades, there have been two core phases in the development of pain research. The first was research on pain mechanisms in the normal state, from the late 1960s through the 1980s. The second, more recent focus has been on pain mechanisms in pathological states. Neurobiological research in the first phase of this explosive development of pain research uncovered detailed characteristics of the nociceptive system in normal states, from nociceptors to the cerebral cortex, and the existence of the endogenous analgesic system. The results obtained during this period were excellent, and we can now almost fully understand the mechanisms underlying nociceptive pain or so called ‘acute pain’, which warns of potential tissue damage. But the outcome of this research, on the other hand, has also shown that the information obtained in the normal state does not by itself explain mechanisms implicated in various mysterious pains of pathological states. The subsequent investigations have demonstrated that plastic changes take place in pain systems in chronic neuropathic states, and can result in structural changes of the nervous system. ‘Plasticity’ of the nervous system is becoming the most important key word in understanding pathological pain.
The terms ‘acute pain’ and ‘chronic pain’ remain very commonly used descriptors. But should we really be using the term ‘chronic pain’ which implies a chronological basis? Recent study on pain has revealed that acute pain has a physiological, nociceptive function. On the other hand, chronic pain may be caused by pathological, plastic changes of the neural system. This indicates that the difference between acute pain and chronic pain may be more than chronological: instead, it is mechanistic. The usage and definition of the terms acute and chronic pain therefore need reconsideration.

Why has ‘plasticity’ become a key word? This may reflect the fact that the pain system is primitive and not well differentiated. From the evolutionary point of view, the pain system was built up at the earliest stages of neural development, since alarm and defence systems are fundamental for survival. This evolutionary origin characterizes the nature of the system responsible for pain. First, the pain system has a high capacity for plastic changes, because its primitive nature provides a high degree of freedom for change. Second, the pain system is intimately related to instinctive functions and other fundamental bodily functions, such as autonomic or postural regulation. Third, humoral signalling is richly implicated, since these signalling means have roots in defence systems such as immune and inflammatory reactions.

Recent advances throw light on plasticity in humoral messenger systems as well as the organization of the neural systems. These neural plastic changes may underlie pathological pain. Reflecting these recent advances, in this symposium we will discuss mechanisms focusing on plastic changes in the pain system under various pathological states, at levels spanning from the molecular to clinical.

This symposium consists of five sessions. In the first two sessions, the roles of ion-channels, receptors and chemical messengers implicated in neuropathic pain will be discussed, mainly from a molecular perspective. Plasticity of the organization of the nervous system involved in pathological pain will be considered on the basis of molecular, electrophysiological and morphological analyses in the third session. Morphine tolerance is a notorious but important problem in pain management. The fourth session will consider the issue of opioid-induced plastic changes in the signalling pathways of anti-nociceptive and pro-nociceptive systems. In the last session, the mechanisms of pathological pain, such as bone cancer pain, complex regional pain syndrome (CRPS), and other chronic pain, will be discussed on the basis of experimental and clinical studies that aim to facilitate establishment of mechanism-based medicine.

I would now like to go back to this booklet published by the Ciba Foundation in 1959 (Ciba Foundation 1959). The title of this booklet, *Pain and itch* may tell us, at that period, that scientific knowledge on pain and itch were at similar levels of development. But at present, our knowledge of the pain system is far superior to that of itch, I think. In the chair’s opening remarks of this book, Lord Adrian wrote
that ‘Although pain is one of the central problems of medicine, it is disappointing that there is still so much to investigate.’ I think that this remains very much so. He also wrote that, ‘We may think that a discharge will not give pain unless it includes impulses in the non-medullated C fibres but the evidence is scarcely conclusive.’ This point seems to have been the main interest of that conference. But at present, we know much about the receptor characteristics of C-fibre nociceptors and the whole nociceptive system. On the other hand, what we know now about itch is almost the same as it was at the beginning of the 1970s when neurophysiological studies on the nociceptive system began to flourish. As far as the pain system is concerned, the knowledge that we can obtain from this earlier symposium is quite limited at present. However, the interesting discussions included in this booklet are quite stimulating.

The Novartis Foundation Symposia have consistently attached importance to informal discussion. This is their distinctive feature and is testament to their importance. The present Symposium membership is made up of 14 speakers and nine discussants and the time scheduled for discussion is nearly 1.5 times longer than time for formal papers. To facilitate fruitful discussion, we have two excellent facilitators in each session whose role is to steer actively the process of discussion. I expect very stimulating discussions over the following three days. Thank you.

References