A BASIC INTRODUCTION TO POLLUTANT FATE AND TRANSPORT

An Integrated Approach With Chemistry, Modeling, Risk Assessment, and Environmental Legislation

FRANK M. DUNNIVANT
Whitman College
Walla Walla, Washington

ELLIOOT ANDERS
Educational Solutions, LLC
Mohawk Trail Regional School District,
Shelburne Falls, Massachusetts
A BASIC
INTRODUCTION TO
POLLUTANT FATE AND
TRANSPORT
To the chemists who have had a positive influence on my career: Loretta McLean, John Coates, Alan Elzerman, Philip Jardine, and Rene Schwarzenbach. Thank you.

Frank M. Dunnivant

To my grandmother, who would understand very little of the technical details of this book, but who appreciates hard work and family more than anyone I know.

Elliot Anders
CONTENTS

PREFACE xv
To the Instructor xvi
To the Student xvi
To the Environmental Professional xvi
How to Use the Book with Fate® and Associated Software xvii
Acknowledgments xvii
SYMBOLS xix
GLOSSARY xxi

PART I INTRODUCTION

CHAPTER 1 SOURCES AND TYPES OF POLLUTANT, WHY WE NEED MODELING, AND HISTORICAL CONTAMINATION EVENTS 3

1.1 Introduction 3
1.2 The Need for Modeling of Pollutants in Environmental Media 4
1.3 Pollution Versus Contamination; Pollutant Versus Contaminant 5
1.4 Pollution Classifications 5
1.5 Sources of Pollution 6
1.6 Historic Examples of Where Fate and Transport Modeling are Useful 16
 1.6.1 Surface Water 16
 1.6.2 Groundwater 20
 1.6.3 Atmosphere 25
1.7 Environmental Laws 26
References 26

PART II CHEMISTRY OF FATE AND TRANSPORT MODELING

CHAPTER 2 BASIC CHEMICAL PROCESSES IN POLLUTANT FATE AND TRANSPORT MODELING 31

2.1 The Liquid Medium: Water and the Water Cycle 31
2.2 Unique Properties of Water 33
2.3 Concentration Units 39
2.4 Chemical Aspects of Environmental Systems 40
 2.4.1 pH 40
 2.4.2 Activity 40
 2.4.3 Solubility 45
2.4.4 Vapor Pressure 59
2.4.5 Henry’s Law Constant 60
2.5 Reactions and Equilibrium 61
2.5.1 Acid–base Chemistry 61
2.5.2 Oxidation–Reduction Chemistry 66
2.6 Complexation 73
2.7 Equilibrium Sorption Phenomena 74
2.7.1 Sorption Surfaces 76
2.7.2 Organic Matter 81
2.7.3 Organic Sorbates 82
2.7.4 Partition Coefficients, K_d and K_p 84
2.7.5 Ion Exchange Phenomena for Ionic Pollutants 85
2.8 Transformation/Degradation Reactions 87
2.8.1 Abiotic Chemical Transformations/Degradations 87
2.8.2 Photochemical Transformation/Degradation Reactions 89
2.8.3 Nuclear 92
2.8.4 Biological 92
2.9 Summary 93
References 95

CHAPTER 3 QUANTITATIVE ASPECTS OF CHEMISTRY TOWARD MODELING

3.1 Introduction 97
3.2 Calculation of the Free Metal Ion Concentration in Natural Waters 97
3.2.1 Calculating Chemical Equilibria 97
3.2.2 Equilibrium Applied to More Complex Speciation Problems 105
3.3 Methods for Determining K_d and K_p 119
3.4 Kinetics of the Sorption Process 124
3.5 Sorption Isotherms 125
3.5.1 A General Approach 125
3.6 Kinetics of Transformation Reactions 129
3.7 Putting It All Together: Where Chemistry Enters into the Modeling Effort 130
Case I: A Metal Pollutant 131
Case II: Hydrophobic Pollutants 131
References 141

PART III MODELING

CHAPTER 4 AN OVERVIEW OF POLLUTANT FATE AND TRANSPORT MODELING

4.1 Modeling Approaches 145
4.1.1 Algebraic Solutions 145
4.1.2 Modeling Using Differential Equations 146
4.1.3 The General Approach for the Models Used in this Text 152
4.1.4 Numerical Methods of Analysis 152
4.2 The Quality of Modeling Results 154
4.3 What Do You Do with Your Modeling Results? 156
References 156
CHAPTER 5 FATE AND TRANSPORT CONCEPTS FOR LAKE SYSTEMS 157

Case Study: Lake Onondaga 157
5.1 Introduction 159
5.2 Types of lakes and lake-forming events 159
5.3 Input Sources 162
5.4 Stratification of Lake Systems 165
5.5 Important Factors in the Modeling of Lakes: Conceptual Model Development 168
 5.5.1 Definitions of Terms: 168
 5.5.2 Detention Times and Effective Mixing Volumes 169
 5.5.3 Chemical Reactions 170
 5.5.4 Sedimentation 170
5.6 Two Basic Mathematical Models for Lakes 173
 5.6.1 Continuous (State) Model 173
 5.6.2 Instantaneous (Pulse) Pollutant Input Model 176
5.7 Sensitivity Analysis 180
5.8 Limitations of Our Models 181
5.9 Remediation 181
References 186

CHAPTER 6 FATE AND TRANSPORT OF POLLUTANTS IN RIVERS AND STREAMS 187

Case Study: The Rhine River 187
6.1 Introduction 188
6.2 Examples of Rivers and Volumetric Flows of Water 188
6.3 Input Sources 189
6.4 Important Factors in the Modeling of Streams: Conceptualization of Terms 190
 6.4.1 Definition of Terms 190
 6.4.2 The Stream Channel 191
 6.4.3 Mixing and Dispersion in Rivers 191
 6.4.4 Removal Mechanisms 193
6.5 Mathematical Development of Simple Transport Models 197
 6.5.1 Solution of the Differential Equation for the Instantaneous Input (Pulse) 197
 6.5.2 Solution of the Differential Equation for the Step Input 200
6.6 Sensitivity Analysis 204
6.7 Limitations of Our Models 204
6.8 Remediation of Polluted Streams Systems 205
References 209

CHAPTER 7 DISSOLVED OXYGEN SAG CURVES IN STREAMS: THE STREETER–PHELPS EQUATION 211

Case Study: Any Stream, Anywhere in the World 211
7.1 Introduction 212
7.2 Basic Input Sources (Wastewater Flow Rates and BOD Levels) 216
7.3 Mathematical Development of Model 218
7.4 Sensitivity Analysis 224
CHAPTER 8 FATE AND TRANSPORT CONCEPTS FOR GROUNDWATER SYSTEMS

Case Study: The Test Area North Deep Well Injection Site at the Idaho National Environmental and Engineering Laboratory (INEEL) 231
8.1 Introduction 232
8.2 Input Sources 234
8.3 Monitoring Wells 235
 8.3.1 Cable Tool Percussion Method 236
 8.3.2 Direct Rotary Drill Method 237
 8.3.3 Earth Augers 240
 8.3.4 Well Casing, Grouting, and Sealing the Well Casing 240
 8.3.5 Well Development 242
 8.3.6 But How good is our well? 244
8.4 Chemistry Experiments Used to Support Modeling Efforts 244
 8.4.1 K_d and K_p Values 246
 8.4.2 Relationship Between K and the Groundwater Fate and Transport Equation 246
 8.4.3 Column Studies for Evaluating Pollutant Transport in Subsurface Media 247
8.5 Direction of Water Flow (the Three-Point Problem) 251
8.6 Physical Parameters Important in Pollutant Fate and Transport 254
 8.6.1 Sources of Dispersion in Geological Media 255
 8.6.2 A Case Study: The INEEL Water and Tracer Infiltration Experiment 256
 8.6.3 Towards a Universal Estimate Technique for Dispersion 263
8.7 Mathematical Models 265
8.8 Sensitivity Analysis 270
8.9 Limitations of Our Models 270
8.10 Remediation 270
References 275

CHAPTER 9 FATE AND TRANSPORT CONCEPTS IN ATMOSPHERIC SYSTEMS

Case Study: The Accident at Union Carbide—Bhopal 277
9.1 Introduction 278
9.2 Input Sources 278
9.3 Important Factors in the Modeling of Atmospheric Pollution: Conceptual Model Development 279
 9.3.1 One- Versus Two- Versus Three-Dimensional Models 279
 9.3.2 Mixing and Dispersion in Atmospheric Systems 279
9.4 Mathematical Development of Model 284
 9.4.1 Step Input (Plume Model) of Pollutant 284
 9.4.2 Instantaneous Input (Pulse or Puff Model) of Pollution 289
9.5 Sensitivity Analysis 296
9.6 Limitations of our model 296
9.7 Remediation 296
References 298

PART IV
RISK ASSESSMENT

CHAPTER 10
RISK AND THE CALCULATION OF HEALTH RISK FROM EXPOSURE TO POLLUTANTS 303

10.1 The Concept of Risk 304
10.2 Dose Rates from Various Sources 306
 10.2.1 Ingestion of Pollutants from Drinking Water 312
 10.2.2 Ingestion of Water While Swimming 314
 10.2.3 Dermal Contact with Pollutants in Water While Swimming 314
 10.2.4 Ingestion of Pollutants in Soil 315
 10.2.5 Intake from Dermal Contact with Pollutants in Soil 315
 10.2.6 Inhalation of Airborne (Vapor Phase) Pollutants 316
 10.2.7 Ingestion of Contaminated Fish and Shellfish 317
 10.2.8 Ingestion of Contaminated Fruits and Vegetables 318
 10.2.9 Ingestion of Contaminated Meat, Eggs, and Dairy Products 318
10.3 Health Risk Calculations for Carcinogens 319
10.4 Health Risk Calculations for Noncarcinogens 323
10.5 Bioconcentration Calculations 325
10.6 Putting It All Together: Margin of Error (Uncertainty) of the Entire Estimation Process 327
References 332

PART V
ENVIRONMENTAL LEGISLATION IN THE UNITED STATES AND EUROPE

CHAPTER 11
ENVIRONMENTAL LAWS 337

11.1 Environmental Movements in the United States 337
11.2 The History of the Environmental Protection Agency (U.S. EPA): Administrators 340
 11.2.1 Timeline of the U.S. Environmental Movement 337
11.3 Major U.S. Environmental Laws 344
 11.3.1 The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 346
 11.3.2 The Air Quality Act, The Clean Air Act, and Amendments 347
 11.3.3 The National Environmental Policy Act 351
 11.3.4 The Solid Waste Disposal Act, Resource Conservation and Recovery Act (RCRA), and Amendments 354
 11.3.5 Occupational Safety and Health Act (OSH Act) 357
 11.3.6 The Federal Water Pollution Control Act, the Clean Water Restoration Act, the Safe Drinking Water Act, and Amendments 357
 11.3.7 The Toxic Substances Control Act 360
 11.3.8 The Comprehensive Environmental Response, Compensation, and Liability Act 361
 11.3.9 The Oil Pollution Act 364
References 332
11.3.10 The Pollution Prevention Act 364
11.3.11 The Endangered Species Act of 1966 and Amendments 365
11.3.12 Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972 365
11.4 EPA’s Record 366
11.5 International Agreements/Treaties Involving the United States 374
11.5.1 U.S.–Canada Environmental Agreements 374
11.5.2 Multinational Agreements 375
11.6 Environmental Policy in the European Union 378
11.6.1 Brief Introduction to the European Union 378
11.6.2 History of Environmental Policy 378
11.6.3 Economy and the Environment 380
11.6.4 The Union Versus Member States 381
11.6.5 The Making of Environmental Policy 382
11.6.6 Existing Environmental Policy 384
11.6.7 Implementation of Environmental Policy 388
11.6.8 Public and the Environment 390
11.6.9 The Future of Environmental Policy 391

References 393

PART VI POLLUTANT CASE STUDIES

CHAPTER 12 CASE STUDIES OF SELECTED POLLUTANTS 399

12.1 Mercury 399
12.1.1 Sources 399
12.1.2 Production/Use 400
12.1.3 Fate and Environmental Distribution 400
12.1.4 Health Effects 401

12.2 Lead 402
12.2.1 Sources 402
12.2.2 Production/Use 402
12.2.3 Fate 403
12.2.4 Environmental Distribution 403
12.2.5 Health Effects 404

12.3 PCBs 406
12.3.1 Sources 406
12.3.2 Production/Use 406
12.3.3 Fate and Environmental Distribution 408
12.3.4 Health Effects 409

12.4 DDT 409
12.4.1 Sources 409
12.4.2 Production/Use 410
12.4.3 Fate 410
12.4.4 Environmental Distribution 410
12.4.5 Health Effects 410

12.5 Endocrine Disruptors 412
12.5.1 Sources 412
12.5.2 Uses and Points of Contact 412