The Plant Cell Wall
Annual Plant Reviews

A series for researchers and postgraduates in the plant sciences. Each volume in this series will focus on a theme of topical importance and emphasis will be placed on rapid publication.

Editorial Board:

Professor Jeremy A. Roberts (Editor-in-Chief), Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK.
Professor Hidemasa Imaseki, Obata-Minami 2 4 19, Moriyama-ku, Nagoya 463, Japan.
Dr Michael McManus, Department of Plant Biology and Biotechnology, Massey University, Palmerston North, New Zealand.
Professor Sharman D. O’Neill, Section of Plant Biology, Division of Biological Science, University of California, Davis, CA 95616-8537, USA.
Professor David G. Robinson, Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.

Titles in the series:

1. Arabidopsis
 Edited by M. Anderson and J. Roberts

2. Biochemistry of Plant Secondary Metabolism
 Edited by M. Wink

3. Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology
 Edited by M. Wink

4. Molecular Plant Pathology
 Edited by M. Dickinson and J. Beynon

5. Vacuolar Compartments
 Edited by D. G. Robinson and J. C. Rogers

6. Plant Reproduction
 Edited by S. D. O’Neill and J. A. Roberts

7. Protein–Protein Interactions in Plant Biology
 Edited by M. T. McManus, W. A. Laing and A. C. Allan

8. The Plant Cell Wall
 Edited by J. Rose

9. The Golgi Apparatus and the Plant Secretory Pathway
 Edited by D. G. Robinson
The Plant Cell Wall

Edited by

JOCELYN K. C. ROSE
Department of Plant Biology
Cornell University
Ithaca, New York
USA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>1 The composition and structure of plant primary cell walls</td>
<td>1</td>
</tr>
<tr>
<td>MALCOLM A. O’NEILL and WILLIAM S. YORK</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Definition of the wall</td>
<td>2</td>
</tr>
<tr>
<td>1.3 The composition of the primary cell wall</td>
<td>3</td>
</tr>
<tr>
<td>1.4 The macromolecular components of primary walls</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Determination of the structures of primary wall polysaccharides</td>
<td>5</td>
</tr>
<tr>
<td>1.5.1 Mass spectrometry</td>
<td>8</td>
</tr>
<tr>
<td>1.5.1.1 Matrix-assisted laser-desorption ionization (MALDI) with</td>
<td>9</td>
</tr>
<tr>
<td>time-of-flight (TOF) mass analysis</td>
<td></td>
</tr>
<tr>
<td>1.5.1.2 Electrospray ionization (ESI)</td>
<td>9</td>
</tr>
<tr>
<td>1.5.1.3 Fast-atom bombardment mass spectrometry (FAB-MS)</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2 Nuclear magnetic resonance spectroscopy (NMR)</td>
<td>10</td>
</tr>
<tr>
<td>1.5.2.1 The structural reporter approach and spectral databases</td>
<td>12</td>
</tr>
<tr>
<td>1.6 Oligosaccharide profiling of cell wall polysaccharides</td>
<td>13</td>
</tr>
<tr>
<td>1.7 The structures of the polysaccharide components of primary walls</td>
<td>14</td>
</tr>
<tr>
<td>1.7.1 The hemicellulosic polysaccharides</td>
<td>14</td>
</tr>
<tr>
<td>1.7.2 Xyloglucan</td>
<td>14</td>
</tr>
<tr>
<td>1.7.3 Variation of xyloglucan structure in dicotyledons and monocotyledons</td>
<td>15</td>
</tr>
<tr>
<td>1.7.4 Xylans</td>
<td>19</td>
</tr>
<tr>
<td>1.7.5 Mannose-containing hemicelluloses</td>
<td>19</td>
</tr>
<tr>
<td>1.8 The pectic polysaccharides</td>
<td>19</td>
</tr>
<tr>
<td>1.8.1 Homogalacturonan</td>
<td>20</td>
</tr>
<tr>
<td>1.8.2 Rhamnogalacturonans</td>
<td>22</td>
</tr>
<tr>
<td>1.8.3 Substituted galacturonans</td>
<td>24</td>
</tr>
<tr>
<td>1.8.3.1 Apiogalacturonans and xylogalacturonans</td>
<td>24</td>
</tr>
<tr>
<td>1.8.3.2 Rhamnogalacturonan II</td>
<td>25</td>
</tr>
<tr>
<td>1.9 Other primary wall components</td>
<td>31</td>
</tr>
<tr>
<td>1.9.1 Structural glycoproteins</td>
<td>31</td>
</tr>
<tr>
<td>1.9.2 Arabinogalactan proteins (AGPs)</td>
<td>31</td>
</tr>
<tr>
<td>1.9.3 Enzymes</td>
<td>31</td>
</tr>
<tr>
<td>1.9.4 Minerals</td>
<td>31</td>
</tr>
<tr>
<td>1.10 General features of wall ultrastructural models</td>
<td>32</td>
</tr>
<tr>
<td>1.10.1 The xyloglucan/cellulose network</td>
<td>33</td>
</tr>
<tr>
<td>1.10.2 The pectic network of dicotyledon primary walls</td>
<td>38</td>
</tr>
<tr>
<td>1.10.3 Borate cross-linking of RG-II and the pectic network of primary walls</td>
<td>40</td>
</tr>
<tr>
<td>1.11 Conclusions</td>
<td>44</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>44</td>
</tr>
</tbody>
</table>
Contents

2 Biophysical characterization of plant cell walls 55

V. J. MORRIS, S. G. RING, A. J. MACDOUGALL and R. H. WILSON

- 2.1 Introduction 55
- 2.2 Infrared spectroscopy of plant cell walls 55
 - 2.2.1 Infrared micro-spectroscopy 57
 - 2.2.2 Polarization 57
 - 2.2.3 Mapping 61
 - 2.2.4 Mutant screening methods 61
 - 2.2.5 Analysis of cell walls 62
 - 2.2.6 Two-dimensional FTIR spectroscopy 63
- 2.3 Atomic force microscopy of cell walls 66
 - 2.3.1 Plant cells 67
 - 2.3.2 Plant cell walls 68
 - 2.3.3 Cellulose 70
 - 2.3.4 Pectins 71
 - 2.3.5 Arabinoxylans 75
 - 2.3.6 Carrageenans 76
- 2.4 Molecular interactions of plant cell wall polymers 78
 - 2.4.1 Plant cells and their wall polymers 78
 - 2.4.2 The pectic polysaccharide network 80
 - 2.4.3 Ionic cross-linking of the pectic polysaccharide network 81
 - 2.4.4 The significance of polymer hydration for the plant cell wall 84
 - 2.4.5 Swelling of the pectin network 84

References 87

3 Molecules in context: probes for cell wall analysis 92

WILLIAM G. T. WILLATS and J. PAUL KNOX

- 3.1 Introduction 92
- 3.2 Technologies for the generation of antibodies 93
- 3.3 Targets, immunogens and antigens 97
 - 3.3.1 Pectic polysaccharides 97
 - 3.3.2 Hemicellulosic polysaccharides 100
 - 3.3.3 Proteoglycans and glycoproteins 100
 - 3.3.4 Phenolics and lignin 102
- 3.4 Extending antibody technologies: the way ahead 102
 - 3.4.1 High throughput antibody characterization: microarrays 102
 - 3.4.2 Antibody engineering 103

References 106

4 Non-enzymic cell wall (glyco)proteins 111

KIM L. JOHNSON, BRIAN J. JONES, CAROLYN J. SCHULTZ and ANTONY BACIC

- 4.1 Introduction 111
- 4.2 Hydroxyproline-rich glycoproteins (HRGPs) 113
 - 4.2.1 Post-translational modification of HRGPs 114
 - 4.2.1.1 Hydroxylation of proline 114
 - 4.2.1.2 Glycosylation of hydroxyproline 115
CONTENTS

4.2.2 Extensins 117
 4.2.2.1 Extensin structure 117
 4.2.2.2 Chimeric extensins 119
 4.2.2.3 Cross-linking of extensins into the wall 122
 4.2.2.4 Extensin function 124
 Structural roles 125
 Developmental roles 125

4.2.3 Arabinogalactan-proteins (AGPs) 126
 4.2.3.1 Structure 126
 4.2.3.2 Chimeric AGPs 131
 4.2.3.3 AGP function 132

4.2.4 Proline-rich proteins (PRPs) 134
 4.2.4.1 Structure of PRPs 134
 4.2.4.2 PRP function 135

4.2.5 Hybrid HRGPs 137

4.3 Glycine-rich proteins (GRPs) 139
 4.3.1 GRP structure 139
 4.3.2 GRP function 141

4.4 Other wall proteins 142

4.5 Conclusion 142

Acknowledgements 143
References 143

5 Towards an understanding of the supramolecular organization of the lignified wall 155
 ALAIN-M. BOUDET

5.1 Introduction 155
5.2 The dynamics of lignification: chemical and ultrastructural aspects 156
5.3 Interactions and cross-linking between non-lignin components of the cell wall 158
5.4 Integration of lignins in the extracellular matrix 160
 5.4.1 Ultrastructural aspects 160
 5.4.2 Interactions and potential linkages with polysaccharides 161
5.5 New insights gained from analysis of transgenic plants and cell wall mutants 164
 5.5.1 Tobacco lines down-regulated for enzymes of monolignol synthesis 165
 5.5.2 Cell wall mutants 168
5.6 Cell wall proteins: their structural roles and potential involvement in the initiation of lignification and wall assembly 170
5.7 Conclusions 175
5.8 Acknowledgements 177
5.9 References 178

6 Plant cell wall biosynthesis: making the bricks 183
 MONIKA S. DOBLIN, CLAUDIA E. VERGARA, STEVE READ, ED NEWBIGIN and ANTONY BACIC

6.1 Introduction 183
 6.1.1 Importance of polysaccharide synthesis 183
 6.1.2 General features of plant cell wall biosynthesis 184
6.2 Synthesis at the plasma membrane 186
 6.2.1 Use of cytoplasmic UDP-glucose in glucan synthesis at the plasma membrane 186
 6.2.2 General features of cellulose biosynthesis 186

Acknowledgements 187
References 187
6.2.3 First identification of a cellulose synthase: the *CESA* genes 187
6.2.4 Roles of different *CESA* family members 192
6.2.5 Other components of the cellulose synthase machinery 195
6.2.6 Involvement of *CSLD* genes in cellulose biosynthesis 197
6.2.7 Callose, callose synthases, and the relationship between callose deposition and cellulose deposition 198
6.2.8 Identification of callose synthases: the *GSL* genes 200
6.2.9 Other components of the callose synthase machinery 202
6.3 Synthesis in the Golgi apparatus 203
6.3.1 General features of polysaccharide synthesis in the Golgi 203
6.3.2 Nucleotide sugar precursors for polysaccharide synthesis in the Golgi 204
6.3.3 Synthesis of non-cellulosic polysaccharide backbones: possible role of *CSL* and *CESA* genes 207
6.3.4 Synthesis of branches on non-cellulosic polysaccharides: role of glycosyl transferases 211
6.4 Future directions 212

6 WAKs: cell wall associated kinases 223
JEFF RIESE, JOSH NEY and BRUCE D. KOHORN

7.1 Preface 223
7.2 Introduction 223
7.3 The cell wall and membrane 224
7.4 Cell wall contacts 224
7.5 The WAK family 226
7.6 A transmembrane protein with a cytoplasmic protein kinase and cell wall domain 226
7.7 WAKs are bound to pectin 227
7.8 Genomic organization of WAKs 227
7.9 EGF repeats 228
7.10 WAK expression 228
7.11 WAKs and cell expansion 230
7.12 WAKs and pathogenesis 231
7.13 WAK ligands 231
7.14 WAK substrates 232
7.15 Summary 233

8 Expansion of the plant cell wall 237
DANIEL J. COSGROVE

8.1 Introduction 237
8.2 Wall stress relaxation, water uptake and cell enlargement 238
8.3 Alternative models of the plant cell wall 239
8.4 The meaning of wall-loosening and wall extensibility 241
8.5 Time scales for changes in cell growth 243
8.6 Candidates for wall-loosening agents 244
8.7 Expansins 245
8.8 Xyloglucan endotransglucosylase/hydrolases (XTHs) 249
8.9 Endo-1,4-β-D-glucanases 252
8.10 Non-enzymatic scission of wall polysaccharides by hydroxyl radicals 254
List of Contributors

Professor Antony Bacic
Plant Cell Biology Research Centre,
School of Botany, University of
Melbourne, VIC 3010, Australia

Dr Sajid Bashir
Department of Plant Biology,
347 Emerson Hall, Cornell University,
Ithaca, New York NY 14853, USA

Professor Alain-M. Boudet
UMR CNRS-UPS 5446,
Pôle de Biotechnologie Végétale,
BP 17 Auzeville, F-341326 Castanet
Tolosan, France

Dr Carmen Catalá
Department of Plant Biology,
Cornell University, Ithaca, NY 14853,
USA

Dr Daniel J. Cosgrove
Department of Biology, 208 Mueller Lab,
Penn State University, University Park,
PA 16802, USA

Dr Monika S. Doblin
Plant Cell Biology Research Centre,
School of Botany, University of
Melbourne, VIC 3010, Australia

Dr Zinnia H. Gonzalez-Carranza
Plant Science Division, School
of Biosciences, University of
Nottingham, Sutton Bonington Campus,
Loughborough, Leicester LE12 5RD, UK

Ms Kim L. Johnson
Plant Cell Biology Research Centre,
School of Botany, University of
Melbourne, VIC 3010, Australia
LIST OF CONTRIBUTORS

Dr Brian J. Jones
Plant Cell Biology Research Centre,
School of Botany, University of
Melbourne, VIC 3010, Australia

Dr J. Paul Knox
Centre for Plant Sciences, University of
Leeds, Leeds LS2 9JT, UK

Dr Bruce D. Kohorn
Department of Biology, Bowdoin
College, Brunswick, ME 04011, USA

Dr A. J. MacDougall
Institute of Food Research, Norwich
Research Park, Colney, Norwich
NR4 7UA, UK

Dr V. J. Morris
Institute of Food Research, Norwich
Research Park, Colney, Norwich
NR4 7UA, UK

Dr Ed Newbigin
Plant Cell Biology Research Centre,
School of Botany, University of
Melbourne, VIC 3010, Australia

Mr Josh Ney
Department of Biology, Bowdoin
College, Brunswick, ME 04011, USA

Dr Malcolm A. O’Neill
Complex Carbohydrate Research Center
and Department of Biochemistry and
Molecular Biology, The University of
Georgia, 22 Riverbend Road, Athens,
GA 30602-4712, USA

Dr Steve Read
School of Resource Management and
Forest Science Centre, University of
Melbourne, Creswick, VIC 3363,
Australia

Mr Jeff Riese
Department of Biology, Bowdoin
College, Brunswick, ME 04011, USA

Dr S. G. Ring
Institute of Food Research, Norwich
Research Park, Colney, Norwich
NR4 7UA, UK
LIST OF CONTRIBUTORS

Professor Jeremy A. Roberts
Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK

Dr Jocelyn K. C. Rose
Department of Plant Biology, 331 Emerson Hall, Cornell University, Ithaca, New York, NY 14853, USA

Dr Wolf-Rüdiger Scheible
Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany

Dr Carolyn J. Schultz
Department of Plant Science, The University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia

Dr Claudia E. Vergara
Plant Cell Biology Research Centre, School of Botany, University of Melbourne, VIC 3010, Australia

Dr William G. T. Willats
Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK

Dr R. H. Wilson
Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK

Dr William S. York
Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, The University of Georgia, 22 Riverbend Road, Athens, GA 30602-4712, USA
Preface

Plant cell wall research has advanced dramatically on numerous fronts in the last few years, in parallel with many related technical innovations. Analytical tools associated with molecular biology, biochemistry, spectroscopy and microscopy, immunology, genomics and proteomics, have all been brought to bear on elucidating plant cell wall structure and function, providing a degree of resolution that has never been possible before. Furthermore, as an appreciation develops of the critical role of cell walls in a broad range of plant developmental events, so does the strength and diversity of cell wall-related scientific research.

This book, written at professional and reference level, provides the growing number of scientists interested in plant cell walls with an overview of some of the key research areas, and provides a conceptual bridge between the wealth of biochemistry-oriented cell wall literature that has accumulated over the last fifty years, and the technology-driven approaches that have emerged more recently. The timing is especially appropriate, given the recent completion of the first plant genome sequencing projects and our entry into the ‘post-genomic’ era. Such breakthroughs have given an exciting glimpse into the substantial size and diversity of the families of genes encoding cell wall-related proteins and, as with most areas of biological complexity, the greater the apparent resolution, the greater the number of questions that are subsequently raised. A common approach of the chapters is therefore to provide suggestions and predictions about where each of the fields of wall research is heading and which milestones are likely to be reached.

Due to size limitations, it has not been possible to cover all the areas of cell wall research, and there are several topics that are not addressed here, such as the role of the wall in plant-pathogen interactions and the significance of apoplastic signaling and metabolism. However, this volume illustrates many of the molecular mechanisms underlying wall structure and function.

The first chapter provides an overview of primary cell wall polysaccharide composition and structure – a long-established field but one that remains extraordinarily challenging and open to debate. Developing clearer visions of secondary walls and wall structural proteins, covered in Chapters 4 and 5, respectively, are also formidable goals, and Chapters 2 and 3 describe analytical approaches that promise to help address these challenges. The dynamic multifunctional nature of plant walls, including mechanisms of information exchange with the protoplast, and the exquisite regulation of wall synthesis, restructuring and disassembly, are discussed in subsequent chapters. The volume concludes with a summary of some