GROWTH FACTORS
AND PSYCHIATRIC
DISORDERS
GROWTH FACTORS AND PSYCHIATRIC DISORDERS
The Novartis Foundation is an international scientific and educational charity (UK Registered Charity No. 313574). Known until September 1997 as the Ciba Foundation, it was established in 1947 by the CIBA company of Basle, which merged with Sandoz in 1996, to form Novartis. The Foundation operates independently in London under English trust law. It was formally opened on 22 June 1949.

The Foundation promotes the study and general knowledge of science and in particular encourages international co-operation in scientific research. To this end, it organizes internationally acclaimed meetings (typically eight symposia and allied open meetings and 15–20 discussion meetings each year) and publishes eight books per year featuring the presented papers and discussions from the symposia. Although primarily an operational rather than a grant-marking foundation, it awards bursaries to young scientists to attend the symposia and afterwards work with one of the other participants.

The Foundation's headquarters at 41 Portland Place, London W1B 1BN, provide library facilities, open to graduates in science and allied disciplines. Media relations are fostered by regular press conferences and by articles prepared by the Foundation's Science Writer in Residence. The Foundation offers accommodation and meeting facilities to visiting scientists and their societies.

Information on all Foundation activities can be found at http://www.novartisfound.org.uk
GROWTH FACTORS
AND PSYCHIATRIC
DISORDERS
Contents

Symposium on Growth factors and psychiatric disorders, held at the Novartis Foundation, London, 20–22 March 2007

Editors: Derek J. Chadwick (Organizer) and Jamie Goode

This symposium is based on a proposal made by Moses Chao

Moses Chao Chair’s introduction 1

Daniel C. Javitt Phenomenology, aetiology and treatment of schizophrenia 4
Discussion 17

Jonathan Flint, Sagiv Shifman, Marcus Munafo and Richard Mott Genetic variants in major depression 23
Discussion 33

Eero Castrén and Tomi Rantamäki Neurotrophins in depression and antidepressant effects 43
Discussion 53

Jinbo Fan and Pamela Sklar Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism 60
Discussion 72

David A. Talmage Mechanisms of neuregulin action 74
Discussion 84

General discussion I 87

H. Akil, S. J. Evans, C. A. Turner, J. Perez, R. M. Myers, W. E. Bunney, E. G. Jones, S. J. Watson and other members of the Pritzker Consortium The fibroblast growth factor family and mood disorders 94
Discussion 97
Jay N. Giedd, Rhoshel K. Lenroot, Philip Shaw, Francois Lalonde, Mark Celano, Samantha White, Julia Tossell, Anjene Addington and Nitin Gogtay Trajectories of anatomic brain development as a phenotype 101
Discussion 112

Bai Lu and Keri Martinowich Cell biology of BDNF and its relevance to schizophrenia 119
Discussion 129

Enrico Tongiorgi and Gabriele Baj Functions and mechanisms of BDNF mRNA trafficking 136
Discussion 147

Amar Sahay and René Hen Hippocampal neurogenesis and depression 152
Discussion 160

Andrés Buonanno, Oh-Bin Kwon, Leqin Yan, Carmen Gonzalez, Marines Longart, Dax Hoffman and Detlef Vullhorst Neuregulins and neuronal plasticity: possible relevance in schizophrenia 165
Discussion 177

Zhe-Yu Chen, Kevin Bath, Bruce McEwen, Barbara Hempstead and Francis Lee Impact of genetic variant BDNF (Val66Met) on brain structure and function 180
Discussion 188

General discussion II 193

D. Malaspina, M. Perrin, K. R. Kleinhaus, M. Opler and S. Harlap Growth and schizophrenia: aetiology, epidemiology and epigenetics 196
Discussion 203

Luiz M. Camargo, Qi Wang and Nicholas J. Brandon What can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology? 208
Discussion 216
Participants

Huda Akil University of Michigan, Mental Health Research Institute, 205 Zina Pitcher, Box 720, Ann Arbor, MI 48109, USA

Yves-Alain Barde Biozentrum, University of Basel, Division of Pharmacology and Neurobiology, Klingelbergstrasse 50/70, CH-4056 Base, Switzerland

Mark Bothwell Department of Physiology and Biophysics, University of Washington, Health Science Building, Box 357290, Seattle, WA 98195-7290, USA

Nicholas J. Brandon Schizophrenia and Bipolar Research, Wyeth Discovery Neuroscience, CN 8000, Princeton, NJ 08543, USA

Andrés Buonanno Section on Molecular Neurobiology, National Institute of Child Health and Development, Bldg 35, Room 2C-1000, 35 Lincoln Drive, Bethesda, MD 20892-3714, USA

Eero Castrén University of Helsinki, Neuroscience Center, PO Box 56, Viikinkaari 4, 00014 Helsinki, Finland

Moses Chao (Chair) Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA

Jonathan Flint The Wellcome Trust Centre for Human Genetics, The University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK

Jay N. Giedd Child Psychiatry Branch, NIMH, Building 10, Room 4C110, 10 Center Drive, MSC 1367, Bethesda, MD 20892-1600, USA

Stephen Haggarty Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA

René Hen Columbia University P & S, Center for Neurobiology and Behavior, 1051 Riverside Drive, Annex, Room 767, Box 87, New York, NY 10032, USA
Daniel C. Javitt Nathan Kline Institute/New York University School of Medicine, Department of Cognitive Neuroscience and Schizophrenia, 140 Old Orangeburg Road, Room S235, Orangeburg, NY 10962, USA

René S. Kahn Universitair Medisch Centrum Utrecht, A01.126, Postbus 85.500, 3508 GA Utrecht, The Netherlands

Emine Eren Koçak (Novartis Foundation Bursar) Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100 Ankara, Turkey

Francis S. Lee Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, Room LC-903, New York, NY 10021, USA

Bai Lu Laboratory of Cellular and Synaptic Neuropysiology, Porter Neuroscience Research Center, Building 35, Room 1C-1004, 35 Convent Drive, MSC 3714, Bethesda, MD 20892-3714, USA

Dolores Malaspina NYU School of Medicine, Department of Psychiatry, 550 First Avenue, MLH-HN323, New York, NY 10016, USA

Kevin McAllister Novartis Institutes for BioMedical Research, Novartis Pharma AG, Lichtstrasse 35, Basel, CH-4056, Switzerland

Michael J. Owen Department of Psychological Medicine, Wales College of Medicine, Cardiff University, Cardiff CF14 4XN, UK

Martin C. Raff MRC LMCB, University College London, Gower Street, London WC1E 6BT, UK

Michael Sendtner Institut für Klinische Neurobiologie, Universitätsklinikum Würzburg, Zinklesweg 10, D-97080 Würzburg Germany

Pamela Sklar Massachusetts General Hospital, Harvard Medical School, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA

Michael Spedding Institute of Research Servier, Experimental Sciences, 11 Rue des Moulineaux, FR-92150, Suresnes, France

David A. Talmage Department of Pharmacology, Centers for Molecular Medicine 548, SUNY Stony Brook, Stony Brook, NY 11794, USA
Enrico Tongiorgi BRAIN Centre for Neuroscience, Università di Trieste, Dipartimento di Biologia, Via Giorgieri, 10-34127 Trieste, Italy

Frank Walsh Discovery Research, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA
Chair’s introduction

Moses Chao

Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA

Psychiatric disorders such as depression, bipolar disease and schizophrenia are debilitating mental illnesses that are influenced by many genetic and environmental factors. While little is known about the neural circuits that underlie mood disorders, genetic studies in the last three years have identified several growth factors as susceptibility genes for depression and schizophrenia, as well as learning and memory disorders. One common theme is that these disorders reflect dysregulation of neural plasticity, as well as neurodevelopment. This symposium on growth factors and psychiatric disorders will consider the pathophysiology and genetics of schizophrenia and depression, and will discuss how growth factors such as neurotrophins and neuregulins may alter synaptic plasticity on a molecular and neural systems level.

I wish to start with a historical footnote. A few weeks ago, Tom Eagleton, a prominent politician, passed away. In 1972, he ran as the vice presidential nominee with George McGovern. Eagleton was asked to step down because it was disclosed that he had suffered several bouts of serious depression. One of the comments made by McGovern in an obituary in the *New York Times* was that that no one in the 1970s knew anything about mental illness, including himself. McGovern had asked Eagleton to leave the ticket, and then lost the general election to Nixon. Over the last 35 years, much progress has been made in biomedical research, including the advent of molecular biology and the sequencing of the entire human genome. Many new insights have been generated from molecular genetics that are relevant to psychiatric disorders.

This meeting presents an opportunity to bring three different groups together: the psychiatric community, basic neuroscientists and human geneticists. These groups rarely encounter each other at meetings. The goal is to encourage cross-fertilization of these disciplines in a small, focused conference. The format of a Novartis Foundation symposium offers an excellent opportunity to foster multidisciplinary interactions that will generate new approaches to this increasingly important topic.

The rationale for this meeting came from the realization that many complex psychiatric disorders have a genetic basis. This has been suggested by a growing
number of association and linkage studies. Also, it has become clear that there are clear links to growth factors and their receptors. We will discuss the role of growth factors at length in this meeting, in particular brain-derived neurotrophic factor (BDNF) and neuregulins and their tyrosine kinase receptors, as well as members of the fibroblast growth factor (FGF) family. It is also worth noting that one of the major hypotheses to account for psychiatric illnesses is from neurodevelopmental and genetic contributions; another comes from changes in synaptic plasticity. These activities are inherent in the actions of growth factors. I am certain these themes will emerge in the papers at this meeting. The challenge for the participants is to determine the strength of these hypotheses.

My interest in this area stems from work on neurotrophic factor receptors, particularly the nerve growth factor (NGF) family, but BDNF has garnered much attention over the last few years. The original identification and cloning of BDNF was done by Yves-Alain Barde (Leibrock et al 1989). It took Yves Barde’s group many years to purify the BDNF protein and to identify the gene. This trophic factor was originally identified for its trophic and differentiation properties, but it also possesses other biological activities. In the last 10 years it has become clear that BDNF exerts dramatic effects upon synaptic transmission in an activity-dependent manner, both on the presynaptic and postsynaptic sites of the synapse. This is an exciting area of research, as there are several strong connections to psychiatric disease. There are two seminal papers in this area. The first is by Eric Lander and Pam Sklar, who identified BDNF as a potential risk locus for bipolar disorder (Sklar et al 2002). A year later, Daniel Weinberger and Bai Lu (Egan et al 2003) characterized the same polymorphism in the context of BDNF release and episodic memory in human subjects. These findings set the stage for a growing number of studies on BDNF and human behaviour.

The other finding that had an important impact on the field of psychiatry came from studies on neuregulin. Kári Stefánsson and deCODE published the original observation that proposed neuregulin as a potential risk factor for schizophrenia (Stefánsson et al 2002). When this paper was published, there was scepticism about how polymorphisms in neuregulin were related to schizophrenia. Since this finding, there has been considerable attention on this issue in other populations. Many single nucleotide polymorphisms in neuregulin 1 have now provided strong genetic evidence in many diverse human populations, including Irish, Scottish and Chinese. This analysis has been complicated because the gene is very large and produces many splice variants and isoforms derived from multiple processing events. As a result, there are a large number of neuregulin proteins with different functions. The history of this protein is complex: it was designated by at least five different names. These names indicate that neuregulin proteins possess many activities, ranging from glial growth, neuronal migration, synapse formation and myelination. In this meeting, we will define several of the functions of this inte-
resting family of proteins, which are directly relevant to the development of psychiatric illnesses.

BDNF and neuregulin are of considerable interest, but many other growth factors display similar activities and functions. I hope we can also consider these other growth factor activities. In terms of the main questions that should be considered at this meeting, the first is how strong is the evidence that growth factors and trophic factors are involved in psychiatric diseases? The mechanism of action of growth factors in psychiatric illnesses has not been explored yet, but if we consider the common signalling mechanisms of tyrosine kinase receptors, the question arises whether other growth factors are also involved in psychiatric disorders? This raises the question of specificity: do only a few trophic factors have an impact upon mental illnesses, or do they all participate in some way?

Another unanswered question concerns pharmacological treatments with antidepressants and other psychotropic drugs. Many antidepressants and psychotropic drugs require a long period of time to become efficacious. Why? BDNF levels are increased by antidepressants, but this time course differs from the clinical time course. Finally, since many of the drugs that have been introduced in the last few years are derived from previous drugs (there have been very few new pharmacological approaches), can we use the information from cellular mechanisms and signal transduction to design new approaches and new drugs for psychiatric illnesses?

The meeting will be primarily devoted to growth factors and trophic factors, and their relevance to psychiatric illnesses, but there are many other genes and proteins that have been implicated in these illnesses. During the course of the symposium we will consider some of the most relevant candidates. I hope that the topic of growth factors will act as a probe into the study of psychiatric illnesses, and that the information will be integrated to provide insights into future treatment for mood disorders.

References

Sklar P, Gabriel SB, McInnis MG et al 2002 Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry 7:579–593