PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING
CONTENTS

PREFACE xi

ACKNOWLEDGMENTS xv

CONTRIBUTORS xvii

CHAPTER 1 INTRODUCTION: A HISTORICAL PERSPECTIVE OF THE DEVELOPMENT AND APPLICATIONS OF PBPK MODELS 1

1.1 Introduction 1

1.2 A Historical Perspective 2

1.2.1 Responses to Inhaled Compounds 3

1.2.2 Pharmaceutical Applications 3

1.2.3 Occupational and Environmental Applications 4

1.2.4 Digital Computation and PBPK Modeling 5

1.3 Expansion of PBPK Model Applications 6

1.3.1 PBPK Models for Tissue Dosimetry from Secondary Data 7

1.3.2 Biological Mechanisms Underlying Pharmacokinetic Behaviors 8

1.3.3 Chemicals as Probes of Biological Processes 9

1.3.4 Risk Assessment Applications 10

1.3.5 PBPK Models as Repository of Mechanistic Data on Distribution and Response 12

1.4 Summary 13

Notation 14

References 15

PART I PBPK MODELING FOR VOLATILE ORGANIC COMPOUNDS

CHAPTER 2 HALOGENATED ALKANES 21

2.1 Introduction 21

2.2 PBPK Model Development for Volatile Organics 21

2.2.1 Model Formulation 22

2.2.2 Model Equations 23

2.2.3 Model Parameterization 25

2.2.4 Model Calculations 26

2.3 Experimental Methods Demonstrated for Groups of Chemicals 26

2.4 PBPK Models for Halogenated Alkanes 29

2.4.1 Anesthetic Gases 29
2.4.2 Chlorofluorocarbons (CFCs), Refrigerants, and Halons 31
2.4.3 Halogenated Alkanes 34
2.5 Summary 47
Notation 47
References 49

CHAPTER 3 HALOGENATED ALKENES 55
3.1 Introduction 55
3.2 The Chloroethylenes: Background 56
3.3 Review of PBPK Models 59
 3.3.1 Vinyl Chloride (VC) 59
 3.3.2 Vinyl Fluoride (VF) 61
 3.3.3 cis-1,2-Dichloroethylene (cDCE) and trans-1,2-Dichloroethylene (tDCE) 62
 3.3.4 Vinylidene Chloride (VDC) 63
 3.3.5 Trichloroethylene (TCE) 64
 3.3.6 Tetrachloroethylene (PERC) 69
 3.3.7 Allyl Chloride (AC) 72
 3.3.8 β-Chloroprene (CD) 73
 3.3.9 Hexachlorobutadiene, HCB 73
3.4 Summary 74
Notation 74
References 75

CHAPTER 4 ALKENE AND AROMATIC COMPOUNDS 79
4.1 Introduction 79
4.2 PK and Pharmacodynamic Properties Important in PBPK Model Development for Aromatic and Alkene Compounds 81
 4.2.1 Metabolism and Mode of Action 81
 4.2.2 Model Structures 82
 4.2.3 PK Differences 83
 4.2.4 Extrahepatic Metabolism and Transport of Metabolites 83
 4.2.5 GSH Conjugation 83
 4.2.6 Endogenous Production 84
 4.2.7 Reactivity with DNA and Protein 84
 4.2.8 Inhibition of Second Oxidative Steps 84
 4.2.9 Variability and PK Differences 84
 4.2.10 Subcompartments in PBPK Models 85
 4.2.11 “Privileged Access” of Epoxide Hydratase to Epoxide Substrates 85
4.3 Review of Aromatic and Alkene PBPK Models 85
 4.3.1 Benzene—A Known Human Carcinogen with an Uncertain Mode of Action 85
 4.3.2 Styrene—Early PBPK Models 90
 4.3.3 1,3-Butadiene 96
 4.3.4 Isoprene 101
 4.3.5 Ethylene, Propylene, and Their Oxides 102
 4.3.6 Naphthalene and Other PAHs 103
 4.3.7 Halobenzenes 105
 4.3.8 Miscellaneous Related Compounds 108
CHAPTER 5 REACTIVE VAPORS IN THE NASAL CAVITY

5.1 Introduction 119
 5.1.1 Nasal Effects and Risk Assessment 119
 5.1.2 General Models for Nasal Uptake 120
5.2 No Air-Phase Models 122
 5.2.1 The “Perfused Nose” Model 122
 5.2.2 Vinyl Acetate 124
5.3 Creating the Air-Phase Compartments 126
 5.3.1 Computational Fluid Dynamics 126
 5.3.2 Estimating the Air-Phase Mass Transfer Coefficient 126
 5.3.3 Estimating Air-Phase Mass Transfer Coefficients—Acrylic Acid 127
5.4 Other Models for Vapors Affecting Nasal Tissues 128
 5.4.1 Vinyl Acetate 128
 5.4.2 Ethyl Acrylate and Its Metabolite, Acrylic Acid 128
 5.4.3 Epichlorohydrin 131
5.5 Methyl Methacrylate 132
5.6 Formaldehyde 134
5.7 Hydrogen Sulfide 137
5.8 Summary 137
 Notation 138
 References 138

CHAPTER 6 ALKANES, OXYHYDROCARBONS, AND RELATED COMPOUNDS

6.1 Introduction 141
6.2 Purposes for PBPK Model Development 142
6.3 PBPK Models for Four Classes of Compounds 143
 6.3.1 Alkanes 143
 6.3.2 Oxyhydrocarbons 145
 6.3.3 Alkylbenzenes 155
 6.3.4 Siloxanes 160
6.4 Summary 162
 Notation 162
 References 163

PART II PBPK MODEL DEVELOPMENT FOR ENVIRONMENTAL POLLUTANTS

CHAPTER 7 PESTICIDES AND PERSISTENT ORGANIC POLLUTANTS (POPs)

7.1 Introduction 169
7.2 Pesticides 172
 7.2.1 Chemical Classes of Pesticides 172
 7.2.2 Modeling Tissue Distribution 174
CHAPTER 11 ANTINEOPLASTIC AGENTS 297

11.1 Introduction 297
11.2 PBPK Models for Antineoplastic Agents 298
 11.2.1 Methotrexate 298
 11.2.2 cis-Dichlorodiammine-platinum 302
 11.2.3 Actinomycin D 305
 11.2.4 2’-Deoxycoformycin (Pentostatin) 306
 11.2.5 5-Fluorouracil 307
 11.2.6 2-Amino-1,3,4-thiadiazole 309
 11.2.7 1-β-d-Arabinofuranosylcytosine 309
 11.2.8 Adriamycin 310
 11.2.9 Melphalan 312
 11.2.10 Topotecan 313
 11.2.11 17-(Allylamino)-17-demethoxygeldanamycin 314
11.3 Summary 315
 Notation 315
 References 316

PART IV PBPK MODELING APPROACHES FOR SPECIAL APPLICATIONS

CHAPTER 12 PERINATAL PHARMACOKINETICS 321

12.1 Introduction 321
12.2 Physiological and Biochemical Changes During Pregnancy 323
 12.2.1 Body Weight Changes and Organ Growth 323
 12.2.2 Physiological and Biochemical Changes in Pregnant Females 323
 12.2.3 Physiological Changes in Fetuses 326
 12.2.4 Mechanisms of Chemical Transfer Through Placenta 326
 12.2.5 Mechanisms of Chemical Transfer Through Breast Milk 327
12.3 Physiological Factors Incorporated into PBPK Models for Perinatal Pharmacokinetics 328
 12.3.1 Body Weight in the Mother 329
 12.3.2 Organ Volume and Cardiac Output in the Mother 329
 12.3.3 Chemical Transfer Through the Placenta and Mammary Gland 331
 12.3.4 Body Weight and Organ Volume in the Fetus/Pup 331
12.4 PBPK Models for Perinatal Transfer 333
 12.4.1 Tetracycline 333
 12.4.2 Morphine 333
 12.4.3 Theophylline 334
 12.4.4 Methadone 334
 12.4.5 Pethidine 334
 12.4.6 Trichloroethylene 335
 12.4.7 5,5’-Dimethyl-2,4-dione-oxazolidinedione (DMO) 335
 12.4.8 Tetrachloroethylene 335
 12.4.9 2-Methoxyethanol and Methoxyacetic Acid 336
 12.4.10 Methylmercury (MeHg) 338
 12.4.11 2,4-Dichlorophenoxyacetic Acid (2,4-D) 338
 12.4.12 Methanol 339
 12.4.13 Vitamin A Acid 339
 12.4.14 Organic Solvents 339
 12.4.15 p-Phenylbenzoic acid (PPBA) 340
 12.4.16 p,p’-Dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) 340
 12.4.17 2-Ethoxyethanol and Ethoxyacetic Acid 340
 12.4.18 Perchlorate 341
12.5 Risk Assessment Dosimetry Models 342
12.6 Summary 342
 Notation 343
 References 344

CHAPTER 13 MIXTURES 349

13.1 Introduction 349
13.2 PBPK Modeling of Chemical Mixtures 350
 13.2.1 Earlier Days: PBPK Modeling of Binary Mixtures 350
 13.2.2 More Recent Endeavor: PBPK Modeling of Higher-Order Mixtures 362
13.3 Future Perspectives: Second-Generation PBPK/PD Modeling 367
13.4 Summary 368
 Notation 369
 References 370

CHAPTER 14 DERMAL EXPOSURE MODELS 375

14.1 Introduction 375
14.2 Factors to Consider in Modeling Dermal Absorption 376
14.3 Dermal Absorption Models 378
 14.3.1 Membrane Models 378
 14.3.2 Compartment Models 379
14.4 Experimental Methods 383
14.5 Summary 384
 Notation 385
 References 385

CHAPTER 15 CONCLUSIONS AND FUTURE DIRECTIONS 389

15.1 Introduction 389
15.2 A Systems Approach for Pharmacokinetics 390
In recent years, there has been an enormous expansion of uses of physiologically based pharmacokinetic (PBPK) modeling in areas related to environmental chemicals and drugs. For individuals interested in PBPK modeling, it is relatively easy to locate and use the contributions of previous authors on a specific chemical of interest. However, it is more difficult to locate broader sets of contributions containing useful modeling techniques and applications. Our purpose was to provide a broad review of the PBPK modeling literature, before the size of the body of work grew large enough to make such an effort prohibitive, and to provide a resource to contain comprehensive coverage of the PBPK modeling literature from its beginnings in the mid-1900s through the first few years of the twenty-first century. This monograph is meant to be a useful reference and educational tool for those professionals and graduate students in toxicology, pharmacology, computational biology, and risk assessment interested in PBPK modeling as a tool for quantifying tissue doses and for describing the response of organisms to chemical exposures.

Our initial literature search in 2001 and updated in 2002, conducted using the Web of Science, Medline, and Toxline databases and incorporating keywords such as physiologically based pharmacokinetic/PBPK model, physiologically based toxicokinetic/PBTK model, and physiologically based pharmacodynamic/PBPD model, uncovered over 1000 references. As the term PBPK model did not become popular until the 1980s, for earlier contributions we relied on literature searches using the names of authors known by the editors to have made early contributions in the field, followed up by searches on other authors and articles cited in these articles. We chose to organize this diverse body of work based on classes of chemicals (e.g., volatile organics and environmental contaminants) and modeling purposes (e.g., perinatal transfer models and dermal absorption models). Our goal was to be fairly comprehensive, but to stress primary contributions in PBPK model development and in applications of these models to investigate factors that regulate chemical distribution within the body. We have also attempted to include articles that appeared over the past few years during completion of this volume. While we have made attempts to be inclusive in our coverage of the PBPK modeling literature, some important contributions may have been missed in our review process. We apologize to authors whose work may have been inadvertently overlooked in these various chapters and not captured by the editorial review.

This monograph describes the development of PBPK modeling for toxic compounds over the past eight decades and their current uses, providing background on the basics of PBPK modeling for understanding the physical, chemical, and biological properties that determine absorption, distribution, metabolism, and elimination of xenobiotics. Early PBPK modeling applications with volatile anesthetics and