Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Preface to first edition</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Introduction to forensic genetics</td>
<td>1</td>
</tr>
<tr>
<td>Forensic genetics</td>
<td>1</td>
</tr>
<tr>
<td>A brief history of forensic genetics</td>
<td>2</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>2 DNA structure and the genome</td>
<td>11</td>
</tr>
<tr>
<td>DNA structure</td>
<td>11</td>
</tr>
<tr>
<td>Organization of DNA into chromosomes</td>
<td>11</td>
</tr>
<tr>
<td>The structure of the human genome</td>
<td>13</td>
</tr>
<tr>
<td>Genetic diversity of modern humans</td>
<td>15</td>
</tr>
<tr>
<td>The genome and forensic genetics</td>
<td>16</td>
</tr>
<tr>
<td>Tandem repeats</td>
<td>16</td>
</tr>
<tr>
<td>Single nucleotide polymorphisms</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>19</td>
</tr>
<tr>
<td>3 Biological material – collection, characterization and storage</td>
<td>21</td>
</tr>
<tr>
<td>Sources of biological evidence</td>
<td>21</td>
</tr>
<tr>
<td>Collection and handling of material at the crime scene</td>
<td>23</td>
</tr>
<tr>
<td>Identification and characterization of biological evidence</td>
<td>23</td>
</tr>
<tr>
<td>Evidence collection</td>
<td>29</td>
</tr>
<tr>
<td>Sexual and physical assault</td>
<td>31</td>
</tr>
<tr>
<td>Storage of biological material</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>32</td>
</tr>
<tr>
<td>4 DNA extraction and quantification</td>
<td>37</td>
</tr>
<tr>
<td>DNA extraction</td>
<td>37</td>
</tr>
<tr>
<td>General principles of DNA extraction</td>
<td>37</td>
</tr>
<tr>
<td>DNA extraction from challenging samples</td>
<td>41</td>
</tr>
<tr>
<td>Quantification of DNA</td>
<td>45</td>
</tr>
<tr>
<td>DNA IQ system</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
</tbody>
</table>
5 Polymerase chain reaction 53
The evolution of PCR-based profiling in forensic genetics 53
DNA replication: the basis of the PCR 54
The components of PCR 54
Taq DNA polymerase 54
The PCR process 56
PCR inhibition 58
Sensitivity and contamination 60
The PCR laboratory 60
Further reading 62
References 62

6 The analysis of short tandem repeats 67
Structure of STR loci 67
The development of STR multiplexes 67
Detection of STR polymorphisms 70
Interpretation of STR profiles 72
Further reading 77
References 77

7 Assessment of STR profiles 81
Stutter peaks 81
Split peaks (±N) 81
Pull-up 83
Template DNA 84
Overloaded profiles 84
Low template DNA typing 84
Peak balance 86
Mixtures 86
Degraded DNA 88
PCR inhibition 90
References 91

8 Statistical interpretation of STR profiles 95
Population genetics 95
Deviation from the Hardy–Weinberg equilibrium 96
Statistical tests to determine deviation from the Hardy–Weinberg equilibrium 97
Estimating the frequencies of STR profiles 98
Corrections to allele frequency databases 98
Which population frequency database should be used? 103
Conclusions 104
Further reading 104
References 104
9 Evaluation and presentation of DNA evidence 107
 Hierarchies of propositions 107
 Likelihood ratios 109
 Two fallacies 113
 Comparison of three approaches 114
 Further reading 115
 References 115

10 Databases of DNA profiles 117
 The UK National DNA Database 117
 International situation 124
 Further reading 128
 References 128

11 Kinship testing 131
 Parentage testing 131
 Punnett square 132
 Identification of human remains 139
 Further reading 140
 References 140

12 Single nucleotide polymorphisms 145
 SNPs – occurrence and structure 145
 Detection of SNPs 146
 SNP detection for forensic applications 148
 Forensic applications of SNPs 149
 SNPs compared with STR loci 150
 References 152

13 Lineage markers 155
 Mitochondria 155
 Applications of mtDNA profiling 157
 Haplotypes and haplogroups 159
 The Y chromosome 161
 Forensic applications of Y chromosome polymorphisms 162
 Further reading 165
 References 165

14 Non-human DNA typing 171
 Non-human sample types 171
 Species identification 173
 Linkage to an individual using STR loci 174
 Linkage to an individual using mitochondrial loci 175
 Microbial DNA testing 176
Foreword

Essentials of forensic science

The world of forensic science is changing at a very fast pace. This is in terms of the provision of forensic science services, the development of technologies and knowledge and the interpretation of analytical and other data as it is applied within forensic practice. Practising forensic scientists are constantly striving to deliver the very best for the judicial process and as such need a reliable and robust knowledge base within their diverse disciplines. It is hoped that this book series will provide a resource by which such knowledge can be underpinned for both students and practitioners of forensic science alike.

The Forensic Science Society is the professional body for forensic practitioners in the United Kingdom. The Society was founded in 1959 and gained professional body status in 2006. The Society is committed to the development of the forensic sciences in all of its many facets, and in particular to the delivery of highly professional and worthwhile publications within these disciplines through ventures such as this book series.

Dr Niamh Nic Daéid
Reader in Forensic Science, University of Strathclyde, Glasgow, Scotland, UK
UK Series Editor
Preface

It is strange to consider that the use of DNA in forensic science has been with us since 1985 and, although a relatively new discipline, it has impacted greatly on the criminal justice system and society as a whole. It is routinely the case that DNA figures in the media, in both real cases and fictional scenarios. The increased interest in forensic science has led to a burgeoning of university courses with modules in forensic science. This book is aimed at undergraduate students studying courses or modules in Forensic Genetics.

We have attempted to take the reader through the process of DNA profiling from the collection of biological evidence to the evaluation and presentation of genetic evidence. Although each chapter can stand alone, the order of chapters is designed to take the reader through the sequential steps in the generation of a DNA profile. The emphasis is on the use of short tandem repeat (STR) loci in human identification as this is currently the preferred technique. Following on from the process of generating a DNA profile, we have attempted to describe in accessible terms how a DNA profile is interpreted and evaluated. In addition, databases of DNA profiles have been developed in many countries and hence there is need to examine their use. While the focus of the book is on STR analysis, chapters on lineage markers and single nucleotide polymorphisms (SNPs) are also provided. A new Chapter has also been added to this edition that provides an overview of DNA profiling of non-human species.

As the field of forensic science and in particular DNA profiling moves onwards at a rapid pace, there are few introductory texts that cover the current state of this science. We are aware that there is a range of texts available that cover specific aspects of DNA profiling and where there this is the case, we direct readers to these books, papers or websites.

We hope that the readers of this book will gain an appreciation of both the underlying principles and the application of forensic genetics.
It is strange to consider that the use of DNA in forensic science has been with us for just over 20 years and, while a relatively new discipline, it has impacted greatly on the criminal justice system and society as a whole. It is routinely the case that DNA figures in the media, in both real cases and fictional scenarios.

The increased interest in forensic science has led to a burgeoning of university courses with modules in forensic science. This book is aimed at undergraduate students studying courses or modules in Forensic Genetics.

We have attempted to take the reader through the process of DNA profiling from the collection of biological evidence to the evaluation and presentation of genetic evidence. While each chapter can stand alone, the order of chapters is designed to take the reader through the sequential steps in the generation of a DNA profile. The emphasis is on the use of short tandem repeat (STR) loci in human identification as this is currently the preferred technique. Following on from the process of generating a DNA profile, we have attempted to describe in accessible terms how a DNA profile is interpreted and evaluated. Databases of DNA profiles have been developed in many countries and hence there is need to examine their use. While the focus of the book is on STR analysis, chapters on lineage markers and single nucleotide polymorphisms (SNPs) are also provided.

As the field of forensic science and in particular DNA profiling moves onward at a rapid pace, there are few introductory texts that cover the current state of this science. We are aware that there is a range of texts available that cover specific aspects of DNA profiling and where there this is the case, we direct readers to these books, papers or web sites.

We hope that the readers of this book will gain an appreciation of both the underlying principles and application of forensic genetics.