Single-Molecule
Optical Detection,
Imaging and Spectroscopy

edited by
T. Basché,
W. E. Moerner,
M. Orrit,
U. P. Wild
This Page Intentionally Left Blank
Single-Molecule
Optical Detection,
Imaging and Spectroscopy

edited by
T. Basché, W. E. Moerner,
M. Orrit, U. P. Wild
Single-Molecule
Optical Detection,
Imaging and Spectroscopy

edited by
T. Basché,
W. E. Moerner,
M. Orrit,
U. P. Wild

VCH
Weinheim • New York • Basel • Cambridge • Tokyo
Techniques for detection and controlled manipulation of single particles such as atoms, molecules, proteins or nanocrystals have been continuously emerging during the past ten years. Scanning tunneling microscopy and atomic force microscopy allowed for the first time the imaging of single atoms and molecules on surfaces in real space. The optical detection of single particles was first realized by imaging the fluorescence of single atomic ions stored in radiofrequency traps. The present book is dedicated to a survey of optical methodologies to detect and image single organic dye molecules (single fluorophores) in solids, on surfaces and in liquids.

Optical experiments at the single-molecule level hold promise for novel and unexpected achievements in different fields of science. In a single-molecule experiment the usual averaging over large populations is absent and inhomogeneous distributions of different origins that complicate measurements on large ensembles are eliminated. Various kinds of spectroscopy and microscopy and some clever combinations of both can be employed to detect single molecules in the condensed phase between liquid helium temperatures and room temperature. The range of techniques and experimental conditions available spans a very broad research arena, which includes quantum optics, the probing of dynamical interactions in solids and on surfaces on a nanoscopic scale, trace analysis and rare event screening in liquids, as well as studies of molecular processes in systems of biological interest.

The wide range of potential applications demonstrates that the topic of single-molecule detection and spectroscopy is quite interdisciplinary. As such, the book is intended for researchers, graduate students and advanced undergraduates in the field of chemical physics, solid-state physics, analytical chemistry, laser spectroscopy, photochemistry and photophysics of molecules, fluorescence spectroscopy, fluorescence microscopy and molecular biology. The book provides thorough introductions to the various methodologies, which makes it also useful for newcomers who wish to enter the field. Since optical experiments at the single-molecule level are a very rapidly expanding area of research a comprehensive list of references is available at the end of each section of the book.

The book is organized according to the different techniques that are used for single-molecule detection. Chapter 1 which is divided into six sections is devoted to single molecule studies in solids at low temperature. Section 1.1 introduces the field by reviewing the physical principles, methods and experimental techniques of high-resolution spectroscopy of single impurity molecules in solids. Section 1.2 treats the single-molecule excitation lineshape, dispersed fluorescence spectra and quantum
optical experiments. Fluorescence microscopy, lifetime measurements, polarization effects and external perturbations by electric fields or hydrostatic pressure are discussed in section 1.3. The absorption lines of single molecules in solids at low temperatures often undergo frequency jumps (spectral shifts). This behaviour is described in section 1.4, and analyzed theoretically in section 1.5. The last section (1.6) of chapter 1 is devoted to magnetic resonance experiments on single molecular spins with or without an applied magnetic field and to the study of spin coherence.

In chapters 2 and 3 microscopic techniques suitable for single-molecule detection are described. Chapter 2 portrays near-field optical microscopy, a technique with sub-diffraction limited spatial resolution. A qualitative introduction into the basics of near-field optical microscopy is given as well as a synopsis of the various results that were achieved in single-molecule imaging and spectroscopy using this technique. The book concludes with a survey of the potential of single-molecule detection in analytical chemistry (chapter 3). Several microscopic techniques for single-molecule fluorescence detection in solution are outlined followed by applications of single-molecule detection in DNA sequencing and capillary electrophoresis.

The editors hope that the present volume will furnish the reader with a thorough understanding of the basic principles of the very rapidly expanding field of single-molecule detection and spectroscopy in the condensed phase. We would be particularly delighted if the book would also serve yet another purpose, namely to stimulate new research directions in this exciting area. We are grateful to S. Mais for technical assistance and to Dr. T. Mager and Dr. M. Baer from VCH publishers for their assistance and constructive help in preparing this book.

October 1996

T. Basché
W. Moerner
M. Orrit
U. P. Wild
List of Contents

1 Low-Temperature Studies in Solids 1
1.1 Physical Principles and Methods of Single-Molecule Spectroscopy in Solids 1
1.1.2 Physical Principles and Optimal Conditions 3
1.1.2.1 General Considerations 3
1.1.2.2 Spectral Selection Using Zero-phonon Lines and Inhomogeneous Broadening 4
1.1.2.3 Peak Absorption Cross-Section 7
1.1.2.4 Other Important Requirements for Single-Molecule Spectroscopy 9
1.1.3 Methods 10
1.1.3.1 Geometrical Configurations for Focusing and Fluorescence Collection 10
1.1.3.2 Detection techniques 12
1.1.3.3 Materials Systems and Structures 25
1.1.4 Summary and Outlook 27
References 28

1.2 Excitation and Emission Spectroscopy and Quantum Optical Measurements 31
1.2.1 Introduction 31
1.2.2 Single Molecule Optical Excitation Lineshape 32
1.2.2.1 Basic Properties 32
1.2.2.2 Temperature Dependence of the Optical Linewidth and Linesshift 35
1.2.2.3 Saturation Behaviour 38
1.2.3 Fluorescence Spectroscopy 43
1.2.3.1 Basic Instrumentation 43
1.2.3.2 Observables 44
List of Contents

1.2.3.3 Results of some Specific Systems
 Pentacene in p-Terphenyl 45
 Terrylene in Polyethylene 46
 Terrylene in p-Terphenyl 48
1.2.4 Quantum Optical Experiments
 Introduction 49
1.2.4.1 Quantum Jumps
 Quantum Jumps in Single Trapped Ions 50
 Quantum Jumps of a Single Molecule 50
1.2.4.2 Fluorescence Intensity Autocorrelation Function
 Theoretical Description of Correlation Effects in a Single Molecule 53
 Experimental Determination of the Intensity Correlation Function 56
 Experimental Results 57
1.2.5 Pump-Probe Experiments 61
1.2.6 Conclusion and Outlook 64
1.2.7 Acknowledgment 65
1.2.8 References 65

1.3 Polarization and Lifetime Measurements, External Perturbations and Microscopy
 Introduction 69
 Spectroscopy with Polarized Light 69
 Experiment 69
 Results and Discussion 73
 Modulation of the Fluorescence Intensity 73
 Theoretical Interpretation 74
 Observation of Domains 75
 Assignment of the Spectroscopic Sites to the Crystallographic Sites 76
 Determination of the Depth of a Single Molecule Relative to the Surface 78
1.3.2.1 Fluorescence Lifetime 79
1.3.2.3 Experimental Set-Up 80
1.3.2.4 Data Analysis 80
1.3.2.5 Measurements and Results 81
1.3.2.6 External Electric Fields and Stark Effect 82
1.3.2.7 Theoretical Overview 83
1.3.2.8 Linear Stark Effect of Single Terrylene Molecules in Polyethylene 84
1.3.2.9 Experimental Set-Up 84
1.3.2.10 Measurements and Results 85
1.3.2.11 Perylene in Nonane 87
List of Contents

1.3.4.4 Quadratic Stark Effect of Single Pentacene Molecules in \(p \)-Terphenyl 88
Experimental Set-Up 88
Measurement Procedure 89
Results 89
1.3.4.5 Stark Effect in the Optical Near-Field 91
Experimental Set-Up 92
Results 92
1.3.5 Pressure Effect 94
1.3.5.1 Experimental 95
Reference Cavity 95
The Pressure Cell 96
1.3.5.2 Results and Discussion 97
Results for Pentacene in \(p \)-Terphenyl 97
Results for Terrylene in \(p \)-Terphenyl 97
Comparison of the two Systems 98
1.3.6 Fluorescence Microscopy 99
1.3.6.1 The Microscope 100
The first Microscope 100
The 3-Lens Microscope 100
The Immersion Micro-Objective 103
1.3.6.2 Applied Fluorescence Microscopy 104
Parallel Study of the Dynamics of Single Molecules 104
1.3.7 Outlook 106
References 106

1.4. Spectral Jumps of Single Molecules 109
1.4.1 Introduction 109
1.4.1.1 Sensitivity of Zero-Phonon Lines to the Environment 109
1.4.1.2 Dynamics of Disordered Solids, Two-Level Systems 110
1.4.1.3 Coupling of a Single Molecule to TLS’s 114
1.4.1.4 Experimental Methods for Spectral Jump Studies 116
1.4.2 Spectral Jumps in Crystals 117
1.4.2.1 Crystal Structure and Defects 117
1.4.2.2 Pentacene in \(para \)-Terphenyl Crystal 118
1.4.2.3 Other Crystalline Systems 124
1.4.3 Spectral Jumps in Polymers 126
1.4.3.1 Polymer Structure and Dynamics 126
1.4.3.2 First Polymer System: Perylene in Polyethylene 127
1.4.3.3 Excitation Lineshapes and Widths 128
Terrylene in Polyethylene 128
Lineshapes and Widths in other Polymers 130
1.4.3.4 Dynamical Properties 132
1.4.4 Conclusions 137
1.4.4.1 Main Results 137
1.4.4.2 New Directions 139
List of Contents

References

1.5 Theoretical Models for the Spectral Dynamics of Individual Molecules in Solids

1.5.1 Introduction

1.5.2 Dynamics of a Single Two-Level System

1.5.3 Spectral Dynamics of a Chromophore Coupled to one or many Two-Level Systems

1.5.4 Experimental Observables

1.5.5 Analysis of Experiments

1.5.6 Conclusion

Acknowledgement

References

1.6 Magnetic Resonance of Single Molecular Spins

1.6.1 Introduction

1.6.2 Principles of the Experiment

1.6.3 Experimental

1.6.4 Mathematical Background of ODMR

1.6.4.1 The Spin Hamiltonian

1.6.4.2 Kinetic Equation of the Optical Pumping Cycle

1.6.4.3 Autocorrelation Function of the Fluorescence Intensity under the Influence of Microwave Irradiation

1.6.5 Steady-State Magnetic Resonance

1.6.5.1 Electron Paramagnetic Resonance

1.6.5.2 Hyperfine Interactions with Individual Nuclei

1.6.5.3 Determination of the Intersystem Crossing Rates via the Autocorrelation Function of the Fluorescence Intensity

1.6.6 Spin Coherence Experiments

1.6.6.1 Transient Nutation

1.6.6.2 Hahn Echo

1.6.6.3 Photon-Triggered EPR

1.6.7 Conclusion

1.6.8 Acknowledgement

References

2 Near-field Optical Imaging and Spectroscopy of Single Molecules

2.1 Introduction

2.2 Principles

2.2.1 Near-Field Optics

2.2.2 Sensitivity

2.3 Experimental Methods

2.3.1 Fluorescence Excitation and Detection

2.3.2 Tip-Sample Distance Control
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>Results</td>
<td>197</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Systems Studied to Date</td>
<td>197</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Orientation and Location</td>
<td>197</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Spectral Diffusion at Room Temperature</td>
<td>201</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Fluorescence Lifetime Behaviour</td>
<td>205</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Photobleaching and Intensity Fluctuations</td>
<td>211</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Biological Applications</td>
<td>216</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusions</td>
<td>220</td>
</tr>
<tr>
<td>2.5.1</td>
<td>The Importance of Single-Molecule Detection</td>
<td>220</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Future</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>220</td>
</tr>
<tr>
<td>3</td>
<td>Single-Molecule Detection in Analytical Chemistry</td>
<td>223</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Photon-Burst Detection of Single Molecules</td>
<td>223</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Digital Communication Theory</td>
<td>225</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Sample Throughput</td>
<td>227</td>
</tr>
<tr>
<td>3.2</td>
<td>History of High-Sensitivity Fluorescence Detection in Flowing Streams</td>
<td>228</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Total Internal Reflection Microscopy</td>
<td>228</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Confocal Microscopy in Solution</td>
<td>229</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Levitated Droplets</td>
<td>231</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Modified Flow Cytometry - Hydrodynamic Focusing</td>
<td>231</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Large Flow Chambers</td>
<td>232</td>
</tr>
<tr>
<td>3.3</td>
<td>Applications of Single Molecule Detection - DNA Sequencing</td>
<td>233</td>
</tr>
<tr>
<td>3.4</td>
<td>Applications of Single Molecule Detection - Capillary Electrophoresis</td>
<td>234</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Characterization of the Instrument</td>
<td>234</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Demonstration of Single-Molecule Detection with a He-Ne</td>
<td>235</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Capillary Electrophoresis</td>
<td>238</td>
</tr>
<tr>
<td>3.5</td>
<td>Acknowledgement</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>245</td>
</tr>
</tbody>
</table>
List of Contributors

W. E. Moerner
Department of Chemistry
and Biochemistry
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0340
USA

T. Basché
Ludwig-Maximilians-Universität München
Institut für Physikalische Chemie
Sophienstraße 11
D-80333 München
Germany

S. Kummer
Ludwig-Maximilians-Universität München
Institut für Physikalische Chemie
Sophienstraße 11
D-80333 München
Germany

C. Bräuchle
Ludwig-Maximilians-Universität München
Institut für Physikalische Chemie
Sophienstraße 11
D-80333 München
Germany

M. Croci
ETH Zürich
Universitätsstraße 22
CH-8022 Zürich
Switzerland

H.-J. Münchborn
ETH Zürich
Universitätsstraße 22
CH-8022 Zürich
Switzerland

U. P. Wild
ETH Zürich
Universitätsstraße 22
CH-8022 Zürich
Switzerland

R. Brown
Université Bordeaux I
Centre de Physique Moléculaire
Optique et Hertzienne
351 Cours de Libération
F-33405 Talence
France

M. Orrit
Université Bordeaux I
Centre de Physique Moléculaire
Optique et Hertzienne
351 Cours de Libération
F-33405 Talence
France

J. L. Skinner
University of Wisconsin
Department of Chemistry
Theoretical Chemistry Institute
Madison, WI 53706
USA

J. Wachtrup
Technische Universität Chemnitz-Zwickau
Institut für Physik
D-09107 Chemnitz
Germany