MATHEMATICS OF SHAPE DESCRIPTION
A Morphological Approach to Image Processing and Computer Graphics
To
Gopa, Nairita,
and Kazuko
To the memory of Pijush K. Ghosh

The doors to knowledge were opened to me at an early age by my father. He taught me that the thirst for knowledge is unquenchable. He was like my very own magician, who made learning creative and fun. Today he is no longer by my side to guide me, but the fulfillment of his dream in the form of this book brings me immense joy. He is alive to me in the pages of this book, and this book is a ray of light in the darkness he has left behind in my life.

Daddy’s Little Girl ...
Nairita Ghosh
Contents

Foreword xiii
Preface xv

1 In Search of a Framework for Shape Description 1
1.1 Shape Description: What It Means to Us 1
1.2 Pure versus Pragmatic Approaches 3
1.3 The Influence of the Digital Computer on Our Approach to Shape Description 5
1.4 A Metamodel for Shape Description 6
1.4.1 A Mathematical Model for Shape Description and Associated Problems 6
1.4.2 The Need for a Metamodel 8
1.4.3 Reformulating the Metamodel to Adapt to the Pragmatic Approach 12
1.5 The Metamodle within the Framework of Formal Language 16
1.5.1 An Introduction to Formal Languages and Grammars 17
1.5.2 A Grammar for the Constructive Part of the Metamodel 20
1.5.3 An Exploration of Shape Description Schemes in Terms of Formal Language Theory 20
1.6 The Art of Model Making 25
1.6.1 What is the Meaning of “Model”? 25
1.6.2 A Few Guiding Principles 25
1.7 Shape Description Schematics and the Tools of Mathematics 37
1.7.1 Underlying Assumptions when Mapping from the Real World to a Mathematical System 37
1.7.2 Fundamental Mathematical Structures and Their Various Compositions 39

2 Sets and Functions for Shape Description 43
2.1 Basic Concepts of Sets 43
2.1.1 Definition of Sets 43
2.1.2 Membership 44
2.1.3 Specifications for a Set to Describe Shapes 44
2.1.4 Special Sets 45
2.2 Equality and Inclusion of Sets 45
2.3 Some Operations on Sets 47
 2.3.1 The Power Set 47
 2.3.2 Set Union 48
 2.3.3 Set Intersection 48
 2.3.4 Set Difference 48
 2.3.5 Set Complement 48
 2.3.6 Symmetric Difference 49
 2.3.7 Venn Diagrams 49
 2.3.8 Cartesian Products 50

2.4 Relations in Sets 52
 2.4.1 Fundamental Concepts 52
 2.4.2 The Properties of Binary Relations in a Set 53
 2.4.3 Equivalence Relations and Partitions 55
 2.4.4 Order Relations 57

2.5 Functions, Mappings, and Operations 59
 2.5.1 Fundamental Concepts 59
 2.5.2 The Graphical Representations of a Function 62
 2.5.3 The Range of a Function, and Various Categories of Function 65
 2.5.4 Composition of Functions 66
 2.5.5 The Inverse Function 68
 2.5.6 The One-to-One Onto Function and Set Isomorphism 71
 2.5.7 Equivalence Relations and Functions 72
 2.5.8 Functions of Many Variables, n-ary Operations 74
 2.5.9 A Special Type of Function: The Analytic Function 75

3 Algebraic Structures for Shape Description 77
 3.1 What is an Algebraic Structure? 77
 3.1.1 Algebraic Systems with Internal Composition Laws 79
 3.1.2 Algebraic Systems with External Composition Laws 81
 3.2 Properties of Algebraic Systems 83
 3.2.1 Associativity 84
 3.2.2 Commutativity 84
 3.2.3 Distributivity 84
 3.2.4 The Existence of the Identity/Unit Element 85
 3.2.5 The Existence of an Inverse Element 86
 3.3 Morphisms of Algebraic Systems 87
 3.4 Semigroups and Monoids: Two Simple Algebraic Systems 92
 3.5 Groups 94
 3.5.1 Fundamentals 94
 3.5.2 The Advantages of Identifying a System as a Group 100
 3.5.3 Transformation Groups 101
 3.6 Symmetry Groups 103
 3.6.1 The Action of a Group on a Set 103
 3.6.2 Translations and the Euclidean Group 105
 3.6.3 The Matrix Group 106
3.7 Proper Rotations of Regular Solids 107
 3.7.1 The Symmetry Groups of the Regular Solids 107
 3.7.2 Finite Rotation Groups in Three Dimensions 112
3.8 Rings 112
 3.8.1 Definitions and Examples 113
 3.8.2 Some Classes of Rings 116
 3.8.3 The Ring of Quaternions and Rotation of Objects 118

4 Morphological Models for Shape Description and Minkowski Operators 125
 4.1 The Objective of Shape Description Modeling 125
 4.2 The Basic Idea of Model Description 127
 4.2.1 The Model 127
 4.2.2 The Shape Operator 128
 4.3 The Mathematical Nature of the Shape Operators 132
 4.3.1 The Minkowski Addition Operator 133
 4.3.2 The Minkowski Decomposition Operator 135
 4.4 A Few Reasons for Choosing Minkowski Operators as Shape Operators 139
 4.4.1 A Natural Description Tool 139
 4.4.2 The Large Domain of the Model 140
 4.4.3 Conciseness in Shape Representation 143
 4.4.4 The Geometric Nature of the Shape Operators 144
 4.5 Geometric Modeling by Minkowski Operations 145
 4.5.1 Better Shape Representation 145
 4.5.2 A Procedural Model 146
 4.5.3 The Internal Structure of a Model 147
 4.5.4 Concise Representation 148
 4.6 Image Analysis by Minkowski Operations 150
 4.6.1 Mathematical Morphology 150
 4.6.2 Morphological Operators 151
 4.6.3 Morphology of Multivalued Figures 154
 4.6.4 Morphological Expansion 155
 4.6.5 The Morphological Skeleton and its Properties 156
 4.6.6 Morphological Decomposition of Figures 158
 4.7 The Wealth and Potential of the Minkowski Operators 163
 4.7.1 Minkowski Operations on Discrete Shapes 163
 4.7.2 Minkowski Operations on Dynamically Varying Shapes 163
 4.7.3 Inverse Shapes 164

5 Arithmetics of Geometric Shape 165
 5.1 The Motivation for a Shape Arithmetic 165
 5.1.1 Does Negative Shape Exist? 165
 5.1.2 What Form Must Negative Shapes Take? 166
5.2 Morphology and the Theory of Numbers
 5.2.1 Morphology for High-Level Vision 167
 5.2.2 The Resemblance between Morphology and the Theory of Numbers 168

5.3 Boundary Representation by Support Functions for Morphological Operations
 5.3.1 The Support Function Representation 169
 5.3.2 The Support Function is a Signed Distance 170
 5.3.3 From Support Function Representation to Boundary Representation and Vice Versa 172
 5.3.4 Necessary and Sufficient Conditions for a Function to be a Support Function 173

5.4 Geometric Operations by Means of Support Functions
 5.4.1 MAX and MIN Operations (Convex Hull and Intersection) 174
 5.4.2 Morphological Operations in Boundary Representation 177

5.5 Morphological Operations on Convex Polygons
 5.5.1 Computation by Means of Support Function Vectors 178
 5.5.2 Computation by Means of Edges: The Emergence of the Boundary Addition Operation ⊎ 181
 5.5.3 Computation by Means of Slope Diagrams: The Unification of Minkowski Addition and Decomposition 182
 5.5.4 The Computation of Boundary Addition 183

5.6 In the Domain of Convex Polyhedra
 5.6.1 Computation by Means of Faces 186
 5.6.2 The Slope Diagram Representation of a Convex Polyhedron 188
 5.6.3 Computation by Means of Slope Diagrams 192

6 Morphological Operations on Nonconvex Objects 195
 6.1 Problems with Nonconvex Objects
 6.1.1 A Localized Definition of $F(A, u)$ 195
 6.1.2 The Anomalous Behavior of the Outer Normals at the Nonconvex Faces 196
 6.1.3 The Need to Maintain Explicit Topological Information about the Operands 197
 6.2 Slope Diagrams for Nonconvex Polygons
 6.2.1 The Boundary Addition of Nonconvex Polygons by Means of Slope Diagrams 198
 6.2.2 Boundary Operations on Nonconvex Polygons – More Complex Cases 201
 6.2.3 Nonconvex Polyhedra and the Slope Diagrammatic Approach 205
 6.3 A Unified Algorithm for Minkowski Operations
 6.3.1 The Unified Algorithm 205
 6.3.2 A Complexity Analysis of the Unified Algorithm 207
 6.3.3 Simplification of the Unified Algorithm Depending on the Type of Input 208
Contents

7 The Morphological Decomposability and Indecomposability of Binary Shapes 215

7.1 The Morphological Indecomposability Problem 215
 - 7.1.1 The Problem and its Motivation 215
 - 7.1.2 Earlier Works 217

7.2 A Special Class of Binary Shapes: The Weakly Taxicab Convex (WTC) Polygons 219
 - 7.2.1 Transforming Binary Images into Polygons 219
 - 7.2.2 The Weakly Taxicab Convex Class of Polygons 220
 - 7.2.3 A Few Properties of WTC Polygons Related to Minkowski Operations 223

7.3 Computing Minkowski Operations on WTC Polygons 226
 - 7.3.1 Representation of WTC Polygons 226
 - 7.3.2 The Minkowski Addition of Two WTC Polygons 229
 - 7.3.3 The Minkowski Decomposition of Two WTC Polygons 234

7.4 A Few Results on Indecomposability in the WTC Domain 234
 - 7.4.1 The Number of Indecomposable Shapes 234
 - 7.4.2 Identifying Indecomposable Polygons within the WTC Domain 236
 - 7.4.3 Simple Indecomposability Tests 241

7.5 A Brief Summing Up 242
 - 7.5.1 Why Does the Uniqueness of Shape Decomposition Fail? 243
 - 7.5.2 How Many Indecomposable Shapes are There? 244
 - 7.5.3 How Can We Define New Equivalence Classes of Polygons? 244
 - 7.5.4 Can We Devise Laws of Exponents, and Eventually Binomial Formulas for Shapes? 244

References 247

Index 251
Foreword

The computer description of shape and the computer manipulation of shape is complex simply because shape itself is complex. Of course, if the world of shape were limited to the Euclidean shapes, there would be no such complexity. However, shape includes all the varieties of biological shapes: from the shapes of trees and their leaves to fish, animals, flowers, and plants – and also natural shapes, such as those of coastlines, and of rocks and crystals.

Mathematical morphology is the mathematical study of shapes through a particular algebra of operations, known as the Minkowski set operations. Here, a shape can be thought of in the most general way possible, as a set of points in two or three dimensions. To fully understand the nature of the algebra of mathematical morphology requires: (1) an understanding of what an axiom system actually provides; (2) fluency in a variety of concepts associated with sets, including the set builder notation in mathematics; and (3) fluency in the concepts of algebraic structures. It is in this setting, formulated by Professor Deguchi, that the particulars of the concepts of mathematical morphology can most fully be appreciated.

Mathematics of Shape Description is the first book to devote half of its pages, in a tutorial fashion, to the basic background and/or essential preliminary concepts that lead up to the definitions of the mathematical morphological operators. This treatment of mathematical morphology simultaneously handles the discrete and the continuous domains, and is based on the mathematical morphology papers of Pijush Ghosh.

I knew Pijush Ghosh in the early 1990s, when he came to visit my laboratory at the University of Washington. His knowledge and understanding of mathematical morphology operations and what could be done with them, and what structures to use to implement continuous domain morphology in a computer program, was thorough and complete. I learned a great deal from him. He was a beautiful person, with a wonderful mind. He passed from this world prematurely, at an early age, only a few years after he returned to India, and he is greatly missed.

Robert M. Haralick
Distinguished Professor of Computer Science
Graduate Center, The City University of New York