THE COGNITIVE DYNAMICS OF COMPUTER SCIENCE

Cost-Effective Large Scale Software Development

Szabolcs Michael de Gyurky

Computer Artwork by

Mark A. Tarbell
THE COGNITIVE DYNAMICS OF COMPUTER SCIENCE
The world-renowned IEEE Computer Society publishes, promotes, and distributes a wide variety of authoritative computer science and engineering texts. These books are available from most retail outlets. Visit the CS Store at http://computer.org/cspress for a list of products.

IEEE Computer Society / Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book program to produce a number of exciting new titles in areas of computer science, computing and networking with a special focus on software engineering. IEEE Computer Society members continue to receive a 15% discount on these titles when purchased through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals please e-mail dplummer@computer.org or write to Books, IEEE Computer Society, 100662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314. Telephone +1-714-821-8380.

Additional information regarding the Computer Society authored book program can also be accessed from our web site at http://computer.org/cspress
THE COGNITIVE DYNAMICS OF COMPUTER SCIENCE

Cost-Effective Large Scale Software Development

Szabolcs Michael de Gyurky

Computer Artwork by

Mark A. Tarbell
To Immanuel Kant

That wonderful teacher,
that exquisite mind and heart,
and beautiful soul.
CONTENTS

<table>
<thead>
<tr>
<th>List of Figures</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction

1.1 The Retention of Software Jobs 2
1.2 Depth of Experience 2
1.3 The Scope of This Book 3
1.4 The Nature of Computer Science 4
1.5 The Future of Computer Science 4
1.6 The Essence of Philosophy 5
1.7 Why Autonomy? 6
1.8 An Architecture for Autonomy 8
1.9 Other Notes 9

Chapter 2 Prologue

2.1 How This Book Originated 11
2.2 The Importance of Management 12
2.3 The Tie-in with Autonomy 13
2.4 Major Themes of This Book 14
2.5 The Challenge of a New Idea 14
2.6 The Importance of Visualization 15
2.7 The Move Toward Autonomy 16
2.8 Why I Wrote This Book 17
2.9 Merging Theory and Practice 18
2.10 The Pace of Computer Science 19
2.11 The Importance of Cognitive Dynamics 21

Chapter 3 The Philosophical Foundations of Computer Software Design

3.1 The Philosophical Origins of Computer Science 23
3.2 Influence of the Cognitive Philosophers 25
3.3 Abstracting the Human Thought System 27
3.4 The Philosophical Foundations of Software Development 28
3.5 The Phenomenon of Reality 29
3.6 The Phenomenon of Subjectivity 30
3.7 Low-Cost Software Development 31
3.8 “On Budget and On Schedule” 33
3.9 The Time to Completion: Schedule 34
3.10 Philosophy and Successful Design 35

Chapter 4 The Philosophical Imperatives of Architectural Design 36
4.1 The Manager as Architect 36
4.2 The Manager as Teacher 37
4.3 The Manager as Social Worker 38
4.4 The Manager as Axman 39
4.5 The Philosophical Imperatives of Architectural Design 39
4.6 Availability of the Manager 40
4.7 Project Manager: 10 Key Attributes and Responsibilities 40
4.8 Philosophical Aspects of Engineering 43
4.9 The Importance of Finishing the Job 44
4.10 Visualizing an Architecture 44
4.11 The Role of Intuition in Design 47
4.12 “Sufficient Reality” and Inference in the Design Process 48
4.13 Dialectics in the Achievement of Sufficient Reality 49
4.14 The Relationship of Logic to Software Architectures 50
4.15 The Logic of the Systems Design 53

Chapter 5 Project and Task Organization 54
5.1 The Role of Organization 55
5.2 The Ability to Organize 57
5.2.1 Traditional Hierarchical Project Organization 57
5.3 The Difficulty of Communication 60
5.4 The Title of “Manager” 61
5.5 The Flat, Nonhierarchical Organization 61
5.6 Projects, Tasks, and Work Units 65
5.7 Large Organizations and Staffing 66
5.8 Staffing Up: The Initial Team 69
5.8.1 The Initial Team 69
5.8.2 Phase One Team Expansion 70
5.8.3 Phase Two Team Expansion 72
5.9 Balancing Hardware and Software 73
5.10 Incremental Deliveries 75
5.11 Functional Organization 76
5.12 Interface Protocols of the Organization 77
5.13 Completion of the Task 77
5.14 Detecting the “Fraud” 78

Chapter 6 The Philosophy of Communication 80
6.1 “Sanity Is an Achievement!” 81
6.2 Gauging Understanding 82
6.3 Internal Team Communication Protocols 82
6.4 External Team Communication Protocols 84
6.5 Technical English as the Medium 85
6.6 Engineers as Technical Writers 87
6.7 Documentation: Articulation of the Requirements and Design 87
6.8 The SRD: Software Requirements Document 88

Chapter 7 Software Management Standards 91
7.1 Three Good Standards 91
7.1.1 JPL-STD-D-4000 92
7.1.2 MIL-STD-498 92
7.1.3 DOD-STD-2167A 92
7.2 Aspects Addressed by a Standard 93
7.3 Preparing to Select the Standard 94
7.4 Standards for Implementation 96
7.4.1 Waiving the Standard 97

Chapter 8 The Estimation of Software Cost 98
8.1 Sponsor Costing Issues 99
8.2 Types of Cost Estimates 101
8.3 “Lines of Code” Metrics 101
8.4 The Major Work Areas, Functions, and Tasks that Must be Included in the Estimation of Cost 103
8.5 The Detailed Cost Estimate 105
8.6 The SRD as a Contract 106

Chapter 9 The Exercise of Project Control 108
9.1 The Functions of Project Control and Oversight 109
9.2 The Requirements Phase 110
9.3 Contents of the Software Requirements Document 111
9.4 The Design Phase 113
9.5 The Implementation Phase 113
9.6 The Test and Integration Phase 115
9.7 Personnel Issues 116
9.8 The Hacker and Other Personalities 118
9.9 The Buck Stops at the Top 119
9.10 How People Think, Pay Attention, and Remember 121
Chapter 10 The Development Process Methodology 125
10.1 The “Design Hub” as Implementation Tool 126
10.2 The Architecture Definition Process 127
10.3 The Use of Large-Scale Representations 129
10.4 Design Team Meetings 130
10.5 Rapid Development versus Prototyping 131
10.6 The Traditional Development Methodology 132
10.7 Action Items, Change Requests, and Software Discrepancy Reports 134
10.8 Resolving Problems and Impasses 134

Chapter 11 The Development of System Architectures 136
11.1 Pushing the Architecture 137
11.2 The Point of “Acceptable Reality” 138
11.3 The Importance and Imperative of Visualizing Phenomena 140
11.4 Traditional Architectures 141
11.5 The Inferred Architecture 142
11.6 The Redesign or Upgrading of Existing Systems 144
11.7 The Approach to New Systems 145

Chapter 12 The Impact of Leadership on Software Development 146
12.1 Recognizing Good Leadership 146
12.2 The Concepts of Management and Leadership 148
12.3 Rewarding Failure 149
12.4 The Leader’s Subordinate 151
12.5 Indications of Poor Leadership 152
12.6 Leadership and Ethics 153
12.7 The Attributes of Leadership 153
 12.7.1 Unselfishness 154
 12.7.2 The Welfare of Others 154
 12.7.3 Ambition 154
 12.7.4 Integrity 154
 12.7.5 Loyalty 155
 12.7.6 Knowledge 155
 12.7.7 Tact 156
 12.7.8 Judgment 157
 12.7.9 Initiative 157
 12.7.10 Bearing 158
 12.7.11 Courage 158
 12.7.12 Decisiveness 159
12.7.13 Dependability 159
12.7.14 Dynamic Energy 160
12.7.15 Enthusiasm 161
12.7.16 Empowerment 163
12.8 The Ramifications of Failure 164
12.9 The Absence of Leadership 165
 12.9.1 Absenteeism 166
 12.9.2 Hidden Agendas 166
 12.9.3 Communication Gap 167
 12.9.4 Poorly Defined Goals 167
12.10 The Basis in Leadership for Failure 168
 12.10.1 Personal Struggles 168
 12.10.2 The “Machiavellian Prince” 169
12.11 The impact of Poor or Nonexistent Leadership 169
 12.11.1 Conquering the Organization 170

Chapter 13 Management of Software Systems Development 172
 13.1 Self-Respect in the Manager 173
 13.2 The Ethical Workplace 173
 13.3 Narcotics Use in the Workforce 174
 13.4 Spotting Narcotics Addicts 177
 13.5 Courage and Dynamic Energy in Management 178
 13.6 The Traveling Manager 180
 13.7 The Manager as Architect 181
 13.8 The Phenomenon of Decision Making 182
 13.9 The Concept of “Ability” 186
 13.10 Manager: Administrator or Leader? 187
 13.11 Authority, Responsibility, and Accountability 189
 13.12 The Issue of Contempt 189
 13.13 Management: The Fulcrum of Project Execution 191
 13.14 The Ascendance of Mediocrity 191
 13.15 The Pitfalls of Staffing Up 193
 13.16 Salary Issues 195
 13.17 Contracting Out Work 196
 13.18 Evaluating Proposals 197
 13.19 Cost Bidding too Early 198

Chapter 14 Four Case Studies of Low-Cost Systems 200
 14.1 Case Study One: The Joint Theater Level Simulation (JTLS) 202
 14.1.1 The Beginnings of JTLS 204
 14.1.2 Estimating the Cost of War 205
14.1.3 Starting up the Effort 208
14.1.4 Costly Lessons Learned 209

14.2 Case Study Two: The Global Decision Support System (GDSS) 211
14.2.1 GDSS System Size 211
14.2.2 The History and Background of GDSS 212
14.2.3 Expediting the System 213
14.2.4 The Euler Sphere 214
14.2.5 Beyond State of the Art 214
14.2.6 A Replicated, Survivable, Synchronous Database Management System 214
14.2.7 The Ultra Large Screen Display System 215
14.2.8 The Local Area Networks 215
14.2.9 The Wide Area Network 215
14.2.10 Distributed Client/Server Technology 215
14.2.11 Message Bus 215
14.2.12 The GDSS Software Architecture 217
14.2.13 Accepting the Challenge 220
14.2.14 Initial Conditions 220
14.2.15 Rapid Development: A Totally Different Approach 221
14.2.16 There Can Be Only One! 223
14.2.17 GDSS End-to-End Architecture 224
14.2.18 Architecting the Development Effort 224
14.2.19 Inferential Systems Architecture 225
14.2.20 The GDSS System Software Layer 226
14.2.21 Applications Language Selection 227
14.2.22 Project Documentation 228
14.2.23 Finding an Ada Expert 228
14.2.24 Testing and Database Design 229
14.2.25 Additional Difficulties 231

14.3 Case Study Three: The Topex TCCS System 233
14.3.1 The Topex TCCS System 233
14.3.2 System Description 233
14.3.3 The Initial Conditions 235
14.3.4 Project Constraints 235
14.3.5 Implementation Considerations 236
14.3.6 Development of TOPEX TCCS 237
14.3.7 Agreeing to Do the Job 238
14.3.8 Ground Truth 239
14.3.9 Start of Project Development 239
14.3.10 Architecting the Environment 241
14.3.11 Hardware Procurement, Software Procurement 242
14.3.12 The Relationship with the Contractor 244
14.3.13 Test Plan Scheduling 245
14.3.14 Adherence to a Standard 246

14.4 Case Study Four: The Jason 1 TCCS System (JTCCS) 246
14.4.1 The Jason 1 TCCS System 247
14.4.2 System Description 247
14.4.3 The Initial Conditions 248
14.4.4 Implementation Considerations 249
14.4.5 The JTCCS Architecture 251

Chapter 15 Operations, Operators, and Users: Their Impact on Cost 257
15.1 The Operational Requirement 258
15.2 The Lack of an Operational Requirement 259
15.3 The Operations Scenario 259
15.4 The Cost of Operators and Analysts 260
15.5 The Voyager Project Operations Center 261
15.6 War Gaming 262
15.7 The Value of Simulation 264
15.8 Funds: A Perspective 264

Chapter 16 The Autonomous Cognitive System 266
16.1 Introduction 266
16.2 The Scale of Autonomy 267
16.2.1 Category IV Autonomous Cognitive System: Superman 267
16.2.2 Category III Autonomous Cognitive System: Perseus 268
16.2.3 Category II Autonomous Cognitive System: Robot 269
16.2.4 Category I Autonomous Cognitive System: Automaton 269
16.3 “I Will, Because I Can” 270
16.4 Toward Cognitive Dynamics 271
16.5 Building an Autonomous System 271
16.6 An Appropriate Model 272
16.7 System-Level Requirements for Autonomy 273
16.8 Architectural Domains for Autonomy 274
16.8.1 Domain I: The Human Thought Architecture Model (Functional Architecture) 274
16.8.2 Domain II: The Human Thought Process Model (Common Software Services) 275
16.9 In Summary 277