BATCH EFFECTS AND NOISE IN MICROARRAY EXPERIMENTS

SOURCES AND SOLUTIONS

Edited by

Andreas Scherer

Founder/CEO of Spheromics, Finland
BATCH EFFECTS AND NOISE IN MICROARRAY EXPERIMENTS
BATCH EFFECTS AND NOISE IN MICROARRAY EXPERIMENTS
SOURCES AND SOLUTIONS

Edited by

Andreas Scherer
Founder/CEO of Spheromics, Finland
Contents

List of Contributors xiii
Foreword xvii
Preface xix

1 Variation, Variability, Batches and Bias in Microarray Experiments: An Introduction 1
Andreas Scherer

2 Microarray Platforms and Aspects of Experimental Variation 5
John A Coller Jr
2.1 Introduction 5
2.2 Microarray Platforms 6
2.2.1 Affymetrix 6
2.2.2 Agilent 7
2.2.3 Illumina 7
2.2.4 Nimblegen 8
2.2.5 Spotted Microarrays 8
2.3 Experimental Considerations 9
2.3.1 Experimental Design 9
2.3.2 Sample and RNA Extraction 9
2.3.3 Amplification 12
2.3.4 Labeling 13
2.3.5 Hybridization 13
2.3.6 Washing 14
2.3.7 Scanning 15
2.3.8 Image Analysis and Data Extraction 16
2.3.9 Clinical Diagnosis 17
2.3.10 Interpretation of the Data 17
2.4 Conclusions 17
3 Experimental Design

Peter Grass

3.1 Introduction 19

3.2 Principles of Experimental Design 20

3.2.1 Definitions 20

3.2.2 Technical Variation 21

3.2.3 Biological Variation 21

3.2.4 Systematic Variation 22

3.2.5 Population, Random Sample, Experimental and Observational Units 22

3.2.6 Experimental Factors 22

3.2.7 Statistical Errors 23

3.3 Measures to Increase Precision and Accuracy 24

3.3.1 Randomization 25

3.3.2 Blocking 25

3.3.3 Replication 25

3.3.4 Further Measures to Optimize Study Design 26

3.4 Systematic Errors in Microarray Studies 28

3.4.1 Selection Bias 28

3.4.2 Observational Bias 28

3.4.3 Bias at Specimen/Tissue Collection 29

3.4.4 Bias at mRNA Extraction and Hybridization 30

3.5 Conclusion 30

4 Batches and Blocks, Sample Pools and Subsamples in the Design and Analysis of Gene Expression Studies

Naomi Altman

4.1 Introduction 33

4.1.1 Batch Effects 35

4.2 A Statistical Linear Mixed Effects Model for Microarray Experiments 35

4.2.1 Using the Linear Model for Design 37

4.2.2 Examples of Design Guided by the Linear Model 37

4.3 Blocks and Batches 39

4.3.1 Complete Block Designs 39

4.3.2 Incomplete Block Designs 39

4.3.3 Multiple Batch Effects 40

4.4 Reducing Batch Effects by Normalization and Statistical Adjustment 41

4.4.1 Between and Within Batch Normalization with Multi-array Methods 43

4.4.2 Statistical Adjustment 46

4.5 Sample Pooling and Sample Splitting 47

4.5.1 Sample Pooling 47

4.5.2 Sample Splitting: Technical Replicates 48
5 Aspects of Technical Bias 51
Martin Schumacher, Frank Staedtler, Wendell D Jones, and Andreas Scherer
5.1 Introduction 51
5.2 Observational Studies 52
 5.2.1 Same Protocol, Different Times of Processing 52
 5.2.2 Same Protocol, Different Sites (Study 1) 53
 5.2.3 Same Protocol, Different Sites (Study 2) 55
 5.2.4 Batch Effect Characteristics at the Probe Level 57
5.3 Conclusion 60

6 Bioinformatic Strategies for cDNA-Microarray Data Processing 61
Jessica Fahlén, Mattias Landfors, Eva Freyhult, Max Bylесjö, Johan Trygg, Torgeir R Hvidsten, and Patrik Rydén
6.1 Introduction 61
 6.1.1 Spike-in Experiments 62
 6.1.2 Key Measures – Sensitivity and Bias 63
 6.1.3 The IC Curve and MA Plot 63
6.2 Pre-processing 64
 6.2.1 Scanning Procedures 65
 6.2.2 Background Correction 65
 6.2.3 Saturation 67
 6.2.4 Normalization 68
 6.2.5 Filtering 70
6.3 Downstream Analysis 71
 6.3.1 Gene Selection 71
 6.3.2 Cluster Analysis 71
6.4 Conclusion 73

7 Batch Effect Estimation of Microarray Platforms with Analysis of Variance 75
Nysia I George and James J Chen
7.1 Introduction 75
 7.1.1 Microarray Gene Expression Data 76
 7.1.2 Analysis of Variance in Gene Expression Data 77
7.2 Variance Component Analysis across Microarray Platforms 78
7.3 Methodology 78
 7.3.1 Data Description 78
 7.3.2 Normalization 79
 7.3.3 Gene-Specific ANOVA Model 81
8 Variance due to Smooth Bias in Rat Liver and Kidney Baseline Gene Expression in a Large Multi-laboratory Data Set
Michael J Boedigheimer, Jeff W Chou, J Christopher Corton, Jennifer Fostel, Raegan O’Lone, P Scott Pine, John Quackenbush, Karol L Thompson, and Russell D Wolfinger
8.1 Introduction 87
8.2 Methodology 89
8.3 Results 89
8.3.1 Assessment of Smooth Bias in Baseline Expression Data Sets 89
8.3.2 Relationship between Smooth Bias and Signal Detection 91
8.3.3 Effect of Smooth Bias Correction on Principal Components Analysis 92
8.3.4 Effect of Smooth Bias Correction on Estimates of Attributable Variability 94
8.3.5 Effect of Smooth Bias Correction on Detection of Genes Differentially Expressed by Fasting 95
8.3.6 Effect of Smooth Bias Correction on the Detection of Strain-Selective Gene Expression 96
8.4 Discussion 97
Acknowledgements 99

9 Microarray Gene Expression: The Effects of Varying Certain Measurement Conditions
Walter Liggett, Jean Lozach, Anne Bergstrom Lucas, Ron L Peterson, Marc L Salit, Danielle Thierry-Mieg, Jean Thierry-Mieg, and Russell D Wolfinger
9.1 Introduction 101
9.2 Input Mass Effect on the Amount of Normalization Applied 103
9.3 Probe-by-Probe Modeling of the Input Mass Effect 103
9.4 Further Evidence of Batch Effects 108
9.5 Conclusions 110

10 Adjusting Batch Effects in Microarray Experiments with Small Sample Size Using Empirical Bayes Methods
W Evan Johnson and Cheng Li
10.1 Introduction 113
10.1.1 Bayesian and Empirical Bayes Applications in Microarrays 114
10.2 Existing Methods for Adjusting Batch Effect 115
10.2.1 Microarray Data Normalization 115
10.2.2 Batch Effect Adjustment Methods for Large Sample Size 115
10.2.3 Model-Based Location and Scale Adjustments 116
10.3 Empirical Bayes Method for Adjusting Batch Effect 117
 10.3.1 Parametric Shrinkage Adjustment 117
 10.3.2 Empirical Bayes Batch Effect Parameter Estimates using Nonparametric Empirical Priors 120
10.4 Data Examples, Results and Robustness of the Empirical Bayes Method 121
 10.4.1 Microarray Data with Batch Effects 121
 10.4.2 Results for Data Set 1 124
 10.4.3 Results for Data Set 2 124
 10.4.4 Robustness of the Empirical Bayes Method 126
 10.4.5 Software Implementation 127
10.5 Discussion 128

11 Identical Reference Samples and Empirical Bayes Method for Cross-Batch Gene Expression Analysis 131
Wynn L Walker and Frank R Sharp

11.1 Introduction 131
11.2 Methodology 133
 11.2.1 Data Description 133
 11.2.2 Empirical Bayes Method for Batch Adjustment 134
 11.2.3 Naïve t-test Batch Adjustment 135
11.3 Application: Expression Profiling of Blood from Muscular Dystrophy Patients 135
 11.3.1 Removal of Cross-Experimental Batch Effects 135
 11.3.2 Removal of Within-Experimental Batch Effects 136
 11.3.3 Removal of Batch Effects: Empirical Bayes Method versus t-Test Filter 137
11.4 Discussion and Conclusion 138
 11.4.1 Methods for Batch Adjustment Within and Across Experiments 138
 11.4.2 Bayesian Approach is Well Suited for Modeling Cross-Experimental Batch Effects 139
 11.4.3 Implications of Cross-Experimental Batch Corrections for Clinical Studies 139

12 Principal Variance Components Analysis: Estimating Batch Effects in Microarray Gene Expression Data 141
Jianying Li, Pierre R Bushel, Tzu-Ming Chu, and Russell D Wolfinger

12.1 Introduction 141
12.2 Methods 143
 12.2.1 Principal Components Analysis 143
 12.2.2 Variance Components Analysis and Mixed Models 145
 12.2.3 Principal Variance Components Analysis 145
12.3 Experimental Data 146
 12.3.1 A Transcription Inhibition Study 146
 12.3.2 A Lung Cancer Toxicity Study 147
 12.3.3 A Hepato-toxicant Toxicity Study 147
12.4 Application of the PVCA Procedure to the Three Example Data Sets 148
 12.4.1 PVCA Provides Detailed Estimates of Batch Effects 148
 12.4.2 Visualizing the Sources of Batch Effects 149
 12.4.3 Selecting the Principal Components in the Modeling 150
12.5 Discussion 153

13 Batch Profile Estimation, Correction, and Scoring 155
 Tzu-Ming Chu, Wenjun Bao, Russell S Thomas, and Russell D Wolfinger
 13.1 Introduction 155
 13.2 Mouse Lung Tumorigenicity Data Set with Batch Effects 157
 13.2.1 Batch Profile Estimation 159
 13.2.2 Batch Profile Correction 160
 13.2.3 Batch Profile Scoring 161
 13.2.4 Cross-Validation Results 162
 13.3 Discussion 164
 Acknowledgements 165

14 Visualization of Cross-Platform Microarray Normalization 167
 Xuxin Liu, Joel Parker, Cheng Fan, Charles M Perou, and J S Marron
 14.1 Introduction 167
 14.2 Analysis of the NCI 60 Data 169
 14.3 Improved Statistical Power 174
 14.4 Gene-by-Gene versus Multivariate Views 178
 14.5 Conclusion 181

15 Toward Integration of Biological Noise: Aggregation Effect in Microarray Data Analysis 183
 Lev Klebanov and Andreas Scherer
 15.1 Introduction 183
 15.2 Aggregated Expression Intensities 185
 15.3 Covariance between Log-Expressions 186
 15.4 Conclusion 189
 Acknowledgements 190

16 Potential Sources of Spurious Associations and Batch Effects in Genome-Wide Association Studies 191
 Huixiao Hong, Leming Shi, James C Fuscoe, Federico Goodsaid, Donna Mendrick, and Weida Tong
 16.1 Introduction 191
 16.2 Potential Sources of Spurious Associations 192
 16.2.1 Spurious Associations Related to Study Design 194
 16.2.2 Spurious Associations Caused in Genotyping Experiments 195
 16.2.3 Spurious Associations Caused by Genotype Calling Errors 195
 16.3 Batch Effects 196
 16.3.1 Batch Effect in Genotyping Experiment 196
 16.3.2 Batch Effect in Genotype Calling 197
16.4 Conclusion 201
Disclaimer 201

17 Standard Operating Procedures in Clinical Gene Expression Biomarker Panel Development 203
Khurram Shahzad, Anshu Sinha, Farhana Latif, and Mario C Deng

17.1 Introduction 203
17.2 Theoretical Framework 204
17.3 Systems-Biological Concepts in Medicine 204
17.4 General Conceptual Challenges 205
17.5 Strategies for Gene Expression Biomarker Development 205
 17.5.1 Phase 1: Clinical Phenotype Consensus Definition 206
 17.5.2 Phase 2: Gene Discovery 207
 17.5.3 Phase 3: Internal Differential Gene List Confirmation 209
 17.5.4 Phase 4: Diagnostic Classifier Development 209
 17.5.5 Phase 5: External Clinical Validation 210
 17.5.6 Phase 6: Clinical Implementation 211
 17.5.7 Phase 7: Post-Clinical Implementation Studies 212
17.6 Conclusions 213

18 Data, Analysis, and Standardization 215
Gabriella Rustici, Andreas Scherer, and John Quackenbush

18.1 Introduction 215
18.2 Reporting Standards 216
18.3 Computational Standards: From Microarray to Omic Sciences 219
 18.3.1 The Microarray Gene Expression Data Society 219
 18.3.2 The Proteomics Standards Initiative 220
 18.3.3 The Metabolomics Standards Initiative 220
 18.3.4 The Genomic Standards Consortium 220
 18.3.5 Systems Biology Initiatives 221
 18.3.6 Data Standards in Biopharmaceutical and Clinical Research 221
 18.3.7 Standards Integration Initiatives 222
 18.3.8 The MIBBI project 223
 18.3.9 OBO Foundry 223
 18.3.10 FuGE and ISA-TAB 223
18.4 Experimental Standards: Developing Quality Metrics and a Consensus on Data Analysis Methods 226
18.5 Conclusions and Future Perspective 228

References 231

Index 245
List of Contributors

Altman, N, Department of Statistics, Pennsylvania State University, University Park, PA, USA; Naomi@stat.psu.edu
Bao, W, SAS Institute Inc., Cary, NC, USA; Wenjun.Bao@jmp.com
Boedigheimer, M, Amgen Inc., Thousand Oaks, CA, USA; MBoedigh@amgen.com
Bushel, PR, National Institute of Environmental Health Services, Research Triangle Park, NC, USA; Bushel@niehs.nih.gov
Bylesjö, M, Computational Life Science Cluster, Chemical Biology Center, KBC, Umeå University, Umeå, Sweden; Max.Bylesjo@chem.umu.se
Chen, JJ, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA; JamesJ.Chen@fda.hhs.gov
Chou, J, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Chou@niehs.nih.gov
Chu, T-M, SAS Institute Inc., Cary, NC, USA; Tzu-Ming.Chu@jmp.com
Coller, JA Jr, Stanford Functional Genomics Facility, Stanford University, Stanford, CA, USA; John.Coller@stanford.edu
Cooper, M, Roche Palo Alto, Palo Alto, CA, USA; Matthew.Cooper.mcl@roche.com
Corton, JC, US Environmental Protection Agency, Research Triangle Park, NC, USA; Corton.Chris@epamail.epa.gov
Deng, MC, Department of Medicine, Columbia University, New York, NY, USA; md785@columbia.edu
Fahlén, J, Department of Statistics, Umeå University, Umeå, Sweden; Jessica.Fahlen@stat.umu.se
Fostel, J, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA; Fostel@niehs.nih.gov
Freyhult, E, Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Eva.Freyhult@climi.umu.se
Fuscoe, JC, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA; James.Fuscoe@fda.hhs.gov
George, NI, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA; Nysia.George@fda.hhs.gov
Goodsaid, F, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA; Federico.Goodsaid@fda.hhs.gov
Grass, P, Novartis Institutes of Biomedical Research, Novartis Pharma AG, Basel, Switzerland; Peter.Grass@novartis.com
Hester, S, US Environmental Protection Agency, Research Triangle Park, NC, USA; Hester.Susan@epa.gov