RISK ASSESSMENT FOR CHEMICALS IN DRINKING WATER

Edited by

ROBERT A. HOWD, Ph.D.
Chief, Water Toxicology Section
Office of Environmental Health Hazard Assessment
California Environmental Protection Agency

ANNA M. FAN, Ph.D.
Chief, Pesticide and Environmental Toxicology Branch
Office of Environmental Health Hazard Assessment
California Environmental Protection Agency
RISK ASSESSMENT FOR CHEMICALS IN DRINKING WATER
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
RISK ASSESSMENT FOR CHEMICALS IN DRINKING WATER

Edited by

ROBERT A. HOWD, Ph.D.
Chief, Water Toxicology Section
Office of Environmental Health Hazard Assessment
California Environmental Protection Agency

ANNA M. FAN, Ph.D.
Chief, Pesticide and Environmental Toxicology Branch
Office of Environmental Health Hazard Assessment
California Environmental Protection Agency

A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xi</td>
</tr>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 Introduction to Drinking Water Risk Assessment

Robert A. Howd

- Development of Drinking Water Regulations, 2
- The Risk Assessment Process, 8
- Public Perceptions and the Precautionary Principle, 13
- References, 14

2 Summary of the Development of Federal Drinking Water Regulations and Health-Based Guidelines for Chemical Contaminants

Joyce Morrissey Donohue and Wynne Maynor Miller

- Selecting Candidates for Regulatory Consideration, 19
- Key Components for Regulatory Development, 20
- Development of Regulatory Values, 28
- Nonregulatory Options, 30
- References, 32
CONTENTS

3 Interpretation of Toxicologic Data for Drinking Water Risk Assessment 35
Robert A. Howd and Anna M. Fan
Animal Toxicity Studies, 38
Human Toxicity Studies, 47
Conclusions, 57
References, 57

4 Exposure Source and Multiroute Exposure Considerations for Risk Assessment of Drinking Water Contaminants 67
Kannan Krishnan and Richard Carrier
Exposure Source Considerations in Risk Assessment, 68
Routes of Exposure and Dose Calculations, 72
References, 86

5 Toxicokinetics for Drinking Water Risk Assessment 91
John C. Lipscomb
Evaluation of Toxicity Data, 93
Toxicokinetics: PBPK Modeling, 95
Risk Assessment, 101
Conclusions, 117
References, 118

6 Health Risk Assessment of Chemical Mixtures in Drinking Water 123
Richard C. Hertzberg, Glenn E. Rice, Linda K. Teuschler, J. Michael Wright, and Jane E. Simmons
Drinking Water Mixture Concerns, 124
Estimating Exposures to Multiple Chemicals in Drinking Water, 130
Toxicological Concepts for Joint Toxicity, 139
Chemical Mixtures Risk Assessment Methods, 143
New Approaches for Assessing Risk from Exposure to Drinking Water Mixtures, 155
Conclusions, 162
References, 163

7 Protection of Infants, Children, and Other Sensitive Subpopulations 171
George V. Alexeeff and Melanie A. Marty
Factors Influencing Differences in Susceptibility Between Infants and Children and Adults, 173
Critical Systems and Periods in Development, 185
Age at Exposure and Susceptibility to Carcinogens, 189
8 Risk Assessment for Essential Nutrients
Joyce Morrissey Donohue
Assessment Approaches, 203
Comparison of Guideline Values, 206
Risk Assessment Recommendations, 210
References, 211

9 Risk Assessment for Arsenic in Drinking Water
Joseph P. Brown
Occurrence and Exposure, 214
Metabolism, 216
Health Effects, 221
Risk Assessment, 245
Conclusions, 250
References, 252

10 Risk Assessment for Chloroform, Reconsidered
Richard Sedman
Carcinogenic Effects, 268
Noncancer Toxic Effects, 268
Mechanisms of Carcinogenicity, 271
Regulation of Cancer Risk, 280
Discussion, 281
References, 283

11 Risk Assessment of a Thyroid Hormone Disruptor: Perchlorate
David Ting
Background, 287
Human Health Risk Assessment, 292
Risk Characterization and Conclusions, 296
References, 298

12 Emerging Contaminants in Drinking Water: A California Perspective
Steven A. Book and David P. Spath
Emerging Chemicals of the Recent Past, 304
Newer Emerging Contaminants, 306
Future Emerging Chemicals, 306
Conclusions, 311
References, 312

13 U.S. EPA Drinking Water Field Office Perspectives and Needs for Risk Assessment 315
Bruce A. Macler

The Nature of Regulatory Risk Assessments, 315
Use of Drinking Water Risk Information in EPA Field Offices, 318
Conclusions, 322
References, 322

14 Risk Assessment: Emerging Issues, Recent Advances, and Future Challenges 325
Anna M. Fan and Robert A. Howd

Emerging Issues, 326
Advances in Science, Approaches, and Methods, 332
Conclusions, 357
References, 359

Index 365
CONTRIBUTORS

George V. Alexeeff, Scientific Affairs Division, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Steven A. Book, Division of Drinking Water and Environmental Management, California Department of Public Health, Sacramento, California

Joseph P. Brown, Air Toxicology and Epidemiology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Richard Carrier, Water, Air, and Climate Change Bureau, Health Canada, Ottawa, Ontario, Canada

Vincent James Cogliano, IARC Monographs Programme, International Agency for Research on Cancer, Lyon, France

Joyce Morrissey Donohue, Office of Science and Technology, Office of Water, U.S. Environmental Protection Agency, Washington, DC (M.S. Nutrition Research; Ph.D. Biochemistry)

Anna M. Fan, Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Richard C. Hertzberg, Department of Environmental and Occupational Health, Emory University, Atlanta, Georgia
Robert A. Howd, Water Toxicology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Kannan Krishnan, Department of Occupational and Environmental Health, Université de Montréal, Montréal, Québec, Canada

John C. Lipscomb, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio

Bruce A. Macler, U.S. Environmental Protection Agency, San Francisco, California

Melanie A. Marty, Air Toxicology and Epidemiology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Wynne Maynor Miller, Office of Ground Water and Drinking Water, U.S. Environmental Protection Agency, Washington, DC (M.S. Environmental Science and Policy)

Glenn E. Rice, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio

Richard Sedman, Water Toxicology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

Jane E. Simmons, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

David P. Spath, Division of Drinking Water and Environmental Management, California Department of Public Health, Sacramento, California

Linda K. Teuschler, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio

David Ting, Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California

J. Michael Wright, National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio
FOREWORD

People have a right to expect that the water they drink, the food they eat, the air they breathe, and the environments where they live and work promote the highest possible level of health. They rely on their health agencies to identify hazards in these environments and to prevent avoidable exposures that are inconsistent with this objective.

Public health systems work best when they prevent hazardous exposures without waiting for epidemiologic studies to measure the adverse effects. This is possible through consideration of experimental studies and models that can identify health risks before they can be observed in humans. This means, however, that risk assessment models often cannot be validated by direct observation, as can models in other fields such as demographics, economics, or weather.

Accordingly, the methods of risk assessment are as important as the results of any one risk assessment. Continuous examination is necessary to ensure that risk assessment methods reflect current scientific understanding and benefit from new experimental systems and models. At the same time, public health agencies are facing new demands, for example, to evaluate the cumulative effects of multiple hazards on susceptible populations and life stages. Risk assessors are meeting this challenge by developing methods that go beyond single-chemical, general-population scenarios to address more complex, but also more realistic, situations.

This volume, which examines current risk assessment methods for chemicals in drinking water, should facilitate understanding and improvement of these methods. It includes perspectives from scientists who are grappling with contemporary risk issues at the California EPA, Health Canada, and the U.S. EPA’s program, regional, and research organizations.
The existence of vigorous, independent risk assessment programs in many countries and also in state agencies is essential to the public health infrastructure. These programs can be viewed as laboratories where innovations in risk assessment methods are developed, implemented, and tested. The best of these ideas receive wider discussion en route to refinement and adoption by other state, national, and international agencies. Such innovation and examination ensures that risk assessment methods continue to reflect emerging scientific understanding and to meet the needs of health agencies worldwide.

The California risk assessors who have edited this book have a unique and valuable perspective in that California has committed to an independent risk assessment of all regulated chemicals in drinking water. In an effort to share their knowledge gained through years of experience in drinking water risk assessment, they have assembled a stellar list of co-authors to address critical regulatory and risk assessment issues. Although not every important subject can be covered in depth in a single volume, this book represents an important compilation of observations and documentation of risk assessment methods, plus a useful guide to the rest of that voluminous literature.

VINCENT JAMES COGLIANO

Head, IARC Monographs Programme
International Agency for Research on Cancer
Lyon, France
Risk assessment for chemicals in drinking water has much in common with risk assessment for other purposes, together with some elements that are unique. This book is intended to cover both aspects, to provide an integrated source of information on the current principles and practices. It is based on many years of experience in the practice of risk assessment, by the editors and the authors. The perspective taken is that of public health protection, as practiced by federal and state governments, mainly within the United States. The most important source of risk assessment guidance available is the United States Environmental Protection Agency (U.S. EPA). However, information relevant to risk assessment of chemicals in drinking water is scattered across dozens if not hundreds of publications, some not readily available, spanning over the last twenty years. For this book we have attempted to assemble and summarize this information to provide a more comprehensible and up-to-date resource.

In taking on the task, we have also attempted to capture current thinking on major risk assessment issues, uncertainties, and ongoing controversies. We acknowledge that our perspectives do not encompass the entire spectrum of toxicology and risk assessment opinion and practices, and we stand by the use of health-protective assumptions in risk assessment. That is a basic requirement for a public health agency. Our intent in pointing out the uncertainties and controversies is to address the health protectiveness of current practice as well as to indicate areas where current practice might be improved by obtaining information to more adequately address or reduce these uncertainties.

However, when the uncertainties in risk assessment of chemicals in drinking water are acknowledged, risk assessors may face certain criticisms. The general public dislikes being told about uncertainty in protecting their health; the purveyors of drinking water who want to assure the public that their water is safe to