Nanotoxicity
Nanotoxicity
From *In Vivo* and *In Vitro* Models to Health Risks

Editors

SAURA C. SAHU
US Food and Drug Administration, Laurel, MD, USA

and

DANIEL A. CASCIANO
Department for Applied Science, University of Arkansas at Little Rock, Little Rock, AR, USA
Dedicated to

My parents, Gopinath and Ichhamani, for their gift of life, love and living examples

My wife, Jharana, for her life-long friendship, love and support

My children, Megha, Sudhir and Subir, for their love and care

Saura C. Sahu
Contents

Preface xi
List of Contributors xiii
Acknowledgments xix

1 Characterization of Nanomaterials for Toxicological Evaluation 1
Kevin W. Powers, Maria Palazuelos, Scott C. Brown and Stephen M. Roberts

2 Criteria and Implementation of Physical and Chemical Characteristics of Nanomaterials for Human Health Effects and Ecological Toxicity Studies 29
Christie M. Sayes and David B. Warheit

3 Considerations for the Design of Toxicity Studies of Inhaled Nanomedicines 41
Lea Ann Dailey

4 High Aspect Ratio Nanoparticles and the Fibre Pathogenicity Paradigm 61
Craig A. Poland, Rodger Duffin and Ken Donaldson

5 Application of Zinc Oxide Quantum Dots in Food Safety 81
Tony Jin, Dazhi Sun, Howard Zhang and Hung-Jue Sue

6 Evaluation of Nanotoxicity of Foods and Drugs: Biological Properties of Red Elemental Selenium at Nano Size (Nano-Se) In Vitro and In Vivo 97
Jinsong Zhang
Contents

7 Evaluation of Toxicity of Nanostructures in Biological Systems 115
 Adam J. Gormley and Hamidreza Ghandehari

8 Developing Bioassay Methods for Evaluating Pulmonary
 Hazards from Nanoscale or Fine Quartz/Titanium Dioxide
 Particulate Materials 161
 David B. Warheit, Kenneth L. Reed and Christie M. Sayes

9 Nanoparticles: Is Neurotoxicity a Concern? 171
 Jianyong Wang, Wenjun Sun and Syed F. Ali

10 Hepatotoxic Potential of Nanomaterials 183
 Saura C. Sahu

11 Nanotoxicity in Blood: Effects of Engineered Nanomaterials on
 Platelets 191
 Jan Simak

12 Sources, Fate and Effects of Engineered Nanomaterials in the
 Aquatic Environment 227
 David S. Barber, Nancy D. Denslow, R. Joseph Griffith and
 Christopher J. Martyniuk

13 Nanotoxicity of Metal Oxide Nanoparticles in Vivo 247
 Weiyue Feng, Bing Wang and Yuliang Zhao

14 In Vivo Hypersensitive Pulmonary Disease Models for Nanotoxicity 271
 Ken-ichi Inoue and Hirohisa Takano

15 In Vivo and In Vitro Models for Nanotoxicology Testing 279
 Rosalba Gornati, Elena Papis, Mario Di Gioacchino, Enrico Sabbioni,
 Isabella Dalle Donne, Aldo Milzani and Giovanni Bernardini

16 In Vitro and In Vivo Toxicity Study of Nanoparticles 303
 Jayoung Jeong, Wan-Seob Cho, Seung Hee Kim and Myung-Haing Cho

17 In Vitro and In Vivo Models for Nanotoxicity Testing 335
 Kyung O. Yu, Laura K. Braydich-Stolle, David M. Mattie, John J. Schlager
 and Saber M. Hussain

18 In Vitro Models for Nanotoxicity Testing 349
 Yinfa Ma

19 In Vitro Human Lung Cell Culture Models to Study the Toxic
 Potential of Nanoparticles 379
 Fabian Blank, Peter Gehr and Barbara Rothen-Rutishauser
Contents ix

20 Iron Oxide Magnetic Nanoparticle Nanotoxicity: Incidence and Mechanisms 397
Thomas R. Pisanic, Sungho Jin and Veronica I. Shubayev

21 Toxicity Testing and Evaluation of Nanoparticles: Challenges in Risk Assessment 427
David Y. Lai and Philip G. Sayre

22 Evaluating Strategies For Risk Assessment of Nanomaterials 459
Nastassja Lewinski, Huiguang Zhu and Rebekah Drezek

23 Strategies for Risk Assessment of Nanomaterials 499
Hae-Seong Yoon, Hyun-Kyung Kim, Dong Deuk Jang and Myung-Haing Cho

24 Metal Nanoparticle Health Risk Assessment 519
Mario Di Gioacchino, Nicola Verna, Rosalba Gornati, Enrico Sabbioni and Giovanni Bernardini

25 Application of Toxicology Studies in Assessing the Health Risks of Nanomaterials in Consumer Products 543
Joyce S. Tsuji, Fionna S. Mowat, Suresh Donthu and Maureen Reitman

26 Safety Assessment of Engineered Nanomaterials in Direct Food Additives and Food Contact Materials 581
Penelope A. Rice, Kimberly S. Cassidy, Jeremy Mihalov and T. Scott Thurmond

Index 597
Preface

Nanotechnology is a rapidly developing, emerging branch of modern technology. This new technology deals with materials of extremely small size, generally in the range of nanometres. The nanomaterials, with their extremely small size and high surface area associated with greater strength, stability, chemical and biological activity, find their wide range of applications in a variety of products in modern society. They are used in rapidly increasing nanoproducts, nanodevices, electronics, diagnostics and drug delivery systems. They are present in a variety of consumer products such as foods, drugs, cosmetics, food colour additives, food containers, paints and surface coatings. This trend is expected to result in an ever-increasing presence of nanoparticles in the human environment. Because of their extremely small size they are capable of entering the human body by inhalation, ingestion, skin penetration, intravenous injections and medical devices, and have the potential to interact with intracellular macromolecules. Because of their greater stability they are anticipated to remain in the body and in the environment for long periods of time. However, information on their potential adverse health effects is very limited at the present time. It is not known at what concentration or size they can exhibit toxicity. Therefore, there are obvious public safety concerns. This has led to the initiation of a new research discipline commonly known as nanotoxicology.

The main purpose of this book is to assemble up-to-date, state-of-the-art toxicological information on nanomaterials presented by recognized experts in a single edition. Therefore, it is an authoritative source of current knowledge in this area of research. The book is designed primarily for research scientists currently engaged in this field. However, it should be of interest to a variety of scientific disciplines including toxicology, genetics, medicine and pharmacology, as well as drug and food and material sciences. Also, it should be of interest to federal regulators and risk assessors of drug, food, environment and consumer products.
Preface

Nanotoxicology is an emerging new multidisciplinary field of science, and therefore there is a risk of change in its rapid development in the near future. However, its fundamental concepts and ideas as well as the experimental data are not going to change. For years to come this book will be a very valuable reference source to students and investigators in this research field to guide them in their future work.

Saura C. Sahu and Daniel A. Casciano
List of Contributors

Syed F. Ali Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, HFT-132, 3900 NCTR Rd, Jefferson, Arkansas 72079, USA

David S. Barber Center for Environmental and Human Toxicology, Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA

Giovanni Bernardini Dipartimento di Biotecnologie e Scienze Molecolari, Università dell’Insubria, Dipartimento di Biologia, Università di Milano, CiSE, Università di Chieti, Italy

Fabian Blank Telethon Institute for Child Health Research, 100 Roberts Road, Subiaco, WA 6008 Australia

Laura K. Braydich-Stolle Applied Biotechnology Branch, 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433-5707, USA

Scott C. Brown Particle Engineering Research Center, University of Florida, Gainesville, FL 32611, USA

Kimberly S. Cassidy US Food and Drug Administration, 5100 Paint Branch Parkway, HFS-275, College Park, MD 20740, USA

Myung-Haing Cho Division of Toxicological Research, National Institute of Toxicological Research, Korea Food and Drug Administration, Seoul, Korea