Composite structures
of steel and concrete
© 2004 R.P. Johnson
© 1994 Blackwell Scientific Publications
© 1975 Constructional Steel Research and Development Organisation

Editorial offices:
Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK
Tel: +44 (0)1865 776868
Blackwell Publishing Inc., 350 Main Street, Malden, MA 02148-5020, USA
Tel: +1 781 388 8250
Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton, Victoria 3053, Australia
Tel: +61 (0)3 8359 1011

The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

First published by Crosby Lockwood Staples 1975
Reprinted 1984
Third Edition published 2004

Library of Congress Cataloging-in-Publication Data
Johnson, R.P. (Roger Paul)
Composite structures of steel and concrete: beams, slabs, columns, and frames for buildings / R.P. Johnson.
 p. cm.
 Includes bibliographical references and index.
 I. Title.
TA664.J63 2004
624.1’821–dc22
2004000841

ISBN 1-4051-0035-4

A catalogue record for this title is available from the British Library

Set in 10/13pt Times
by Graphicraft Limited, Hong Kong
Printed and bound in India
by Replika Press Pvt. Ltd, Kundli 131028

The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on Blackwell Publishing, visit our website:
www.thatconstructionsite.com
Contents

Preface x
Symbols, terminology and units xiii

Chapter 1 Introduction 1
1.1 Composite beams and slabs 1
1.2 Composite columns and frames 2
1.3 Design philosophy and the Eurocodes 3
 1.3.1 Background 3
 1.3.2 Limit state design philosophy 5
 Basis of design, and actions 5
 Resistances 7
 Combinations of actions 8
 Comments on limit state design philosophy 9
1.4 Properties of materials 10
1.5 Direct actions (loading) 13
1.6 Methods of analysis and design 14

Chapter 2 Shear connection 20
2.1 Introduction 20
2.2 Simply-supported beam of rectangular cross-section 21
 2.2.1 No shear connection 22
 2.2.2 Full interaction 24
2.3 Uplift 26
2.4 Methods of shear connection 26
 2.4.1 Bond 26
 2.4.2 Shear connectors 27
 2.4.3 Shear connection for profiled steel sheeting 29
2.5 Properties of shear connectors 29
 2.5.1 Stud connectors used with profiled steel sheeting 34
2.6 Partial interaction 35
2.7 Effect of slip on stresses and deflections 37
2.8 Longitudinal shear in composite slabs
2.8.1 The $m-k$ or shear-bond test

Chapter 3 Simply-supported composite slabs and beams

3.1 Introduction
3.2 Example: layout, materials and loadings
3.3 Composite floor slabs
 3.3.1 Resistance of composite slabs to sagging bending
 3.3.2 Resistance of composite slabs to longitudinal shear
 3.3.3 Resistance of composite slabs to vertical shear
 3.3.4 Punching shear
 3.3.5 Bending moments from concentrated point and line loads
 3.3.6 Serviceability limit states for composite slabs
 3.3.7 Fire resistance
 Partial safety factors for fire
 Design action effects for fire
 Thermal properties of materials
 Design methods for resistance to fire
 Simple calculation model for unprotected composite slab

3.4 Example: composite slab
 3.4.1 Profiled steel sheeting as shuttering
 3.4.2 Composite slab – flexure and vertical shear
 3.4.3 Composite slab – longitudinal shear
 3.4.4 Local effects of point load
 3.4.5 Composite slab – serviceability
 3.4.6 Composite slab – fire design
 3.4.7 Comments on the design of the composite slab

3.5 Composite beams – sagging bending and vertical shear
 3.5.1 Effective cross-section
 3.5.2 Classification of steel elements in compression
 3.5.3 Resistance to sagging bending
 Cross-sections in Class 1 or 2
 Cross-sections in Class 3 or 4
 3.5.4 Resistance to vertical shear

3.6 Composite beams – longitudinal shear
 3.6.1 Critical lengths and cross-sections
 3.6.2 Ductile and non-ductile connectors
 3.6.3 Transverse reinforcement
 Design rules for transverse reinforcement in solid slabs
Contents

3.6.4 Detailsing rules 93
3.7 Stresses, deflections and cracking in service 94
3.7.1 Elastic analysis of composite sections in sagging bending 96
3.7.2 The use of limiting span-to-depth ratios 98
3.8 Effects of shrinkage of concrete and of temperature 99
3.9 Vibration of composite floor structures 100
3.9.1 Prediction of fundamental natural frequency 102
3.9.2 Response of a composite floor to pedestrian traffic 104
3.10 Fire resistance of composite beams 105
3.11 Example: simply-supported composite beam 107
3.11.1 Composite beam – full-interaction flexure and vertical shear 108
3.11.2 Composite beam – partial shear connection, and transverse reinforcement 111
3.11.3 Composite beam – deflection and vibration 115
3.11.4 Composite beam – fire design 120

Chapter 4 Continuous beams and slabs, and beams in frames 122
4.1 Introduction 122
4.2 Hogging moment regions of continuous composite beams 126
4.2.1 Classification of sections, and resistance to bending 126
4.2.2 Vertical shear, and moment-shear interaction 132
4.2.3 Longitudinal shear 133
4.2.4 Lateral buckling 134
4.2.5 Cracking of concrete 140
4.3 Global analysis of continuous beams 146
4.3.1 General 146
4.3.2 Elastic analysis 147
This volume provides an introduction to the theory and design of composite structures of steel and concrete. Readers are assumed to be familiar with the elastic and plastic theories for the analysis for bending and shear of cross-sections of beams and columns of a single material, such as structural steel, and to have some knowledge of reinforced concrete. No previous knowledge is assumed of the concept of shear connection within a member composed of concrete and structural steel, nor of the use of profiled steel sheeting in composite slabs. Shear connection is covered in depth in Chapter 2 and Appendix A, and the principal types of composite member in Chapters 3, 4 and 5.

All material of a fundamental nature that is applicable to structures for both buildings and bridges is included, plus more detailed information and a fully worked example relating to buildings. The design methods are illustrated by calculations. For this purpose a single problem, or variations of it, has been used throughout the volume. The reader will find that the dimensions for this structure, its loadings, and the strengths of the materials soon remain in the memory. The design is not optimal, because one object here has been to encounter a wide range of design problems, whereas in practice one seeks to avoid them.

This volume is intended for undergraduate and graduate students, for university teachers, and for engineers in professional practice who seek familiarity with composite structures. Most readers will seek to develop the skills needed both to design new structures and to predict the behaviour of existing ones. This is now always done using guidance from a code of practice. The British code for composite beams, BS 5950:Part 3, Section 3.1, is associated with BS 5950:Part 1 for steel structures and BS 8100 for concrete structures. These are all being superseded by the new European codes (‘Eurocodes’), and will be withdrawn within a few years. The Eurocodes are being published by the standards institutions for most European countries as EN 1990 to EN 1999, each of which has several Parts. These have been available as ENV (preliminary) codes for several years.
In the UK, their numbers are BS EN 1990, etc., and in Germany (for example) DIN EN 1990, etc. Each code includes a National Annex, for use for design of structures to be built in the country concerned. Apart from these annexes and the language used, the codes will be identical in all countries that are members of the European Committee for Standardization, CEN.

The Eurocode for composite structures, EN 1994, is based on recent research and current practice, particularly that of Western Europe. It has much in common with the latest national codes in this region, but its scope is far wider. It has many cross-references to other Eurocodes, particularly:

- EN 1990, Basis of Structural Design,
- EN 1991, Actions on Structures,
- EN 1992, Design of Concrete Structures and
- EN 1993, Design of Steel Structures.

All the design methods explained and used in this volume are those of the Eurocodes. The worked example, a multi-storey framed structure for a building, includes design for resistance to fire. Foundations are not included.

The Eurocodes refer to other European (EN) and International (ISO) standards, for subjects such as products made from steel and execution. ‘Execution’ is an example of a word used in Eurocodes with a particular meaning, which is replacing the word in current usage, construction. Other examples will be explained as they occur.

Some of these standards may not yet be widely available, so this volume is self-contained. Readers do not need access to any of them; and should not assume that the worked examples here are fully in accordance with the Eurocodes as implemented in any particular country. This is because Eurocodes give only ‘recommended’ values for some numerical values, especially the γ and ψ factors. The recommended values, which are used here, are subject to revision in National Annexes. However, very few of them are being changed.

Engineers who need to use a Eurocode in professional practice should also consult the relevant Designers’ Guide. These are being published in the UK for each Eurocode, and are suitable only for use with the code and those to which it refers. They are essentially commentaries on a clause-by-clause basis, and start from a higher level of prior knowledge than is assumed here. The Guide to EN 1994-1-1, Design of composite steel and concrete structures – General rules and rules for buildings is consistent with this book, being written by the present author and D. Anderson. Corresponding publications in other languages are appearing, each relating the Eurocodes to the national codes of the country concerned.
The previous edition of this volume was based on the ENV Eurocodes. The many changes made in the EN versions have led to extensive revision and a complete re-working of the examples.

The author has for several decades shared the challenge of drafting the General, Buildings and Bridges parts of EN 1994 with other members of multi-national committees, particularly Henri Mathieu, Karlheinz Roik, Jan Stark, Gerhard Hanswille, Bernt Johansson, Jean-Paul Lebet, Joel Raoul, Basil Kolas and David Anderson. The substantial contributions made by these friends and colleagues to the author’s understanding of the subject are gratefully acknowledged. However, responsibility for what is presented here rests with the writer, who would be glad to be informed of any errors that may be found.

Thanks are due also to the School of Engineering, University of Warwick, for facilities provided, and most of all to the writer’s wife Diana, for her unfailing support.

R.P. Johnson

Cover photograph shows composite decking prior to concreting (courtesy of The Steel Construction Institute).
Symbols, terminology and units

The symbols used in this volume are, wherever possible, the same as those in EN 1994 and in the Designers’ Guide to EN 1994-1-1. They are based on ISO 3898:1987, Bases for design of structures – Notation – General symbols. They are more consistent than those used in the British codes, and more informative. For example, in design one often compares an applied ultimate bending moment (an ‘action effect’ or ‘effect of action’) with a bending resistance, since the former must not exceed the latter. This is written

\[M_{Ed} \leq M_{Rd} \]

where the subscripts E, d and R mean ‘effect of action’, ‘design’ and ‘resistance’, respectively.

For longitudinal shear, the following should be noted:

- \(v \), a shear stress (shear force per unit area), with \(\tau \) used for a vertical shear stress;
- \(v_L \), a shear force per unit length of member, known as ‘shear flow’;
- \(V \), a shear force (used also for a vertical shear force).

For subscripts, the presence of three types of steel leads to the use of ‘s’ for reinforcement, ‘a’ (from the French ‘acier’) for structural steel, and ‘p’ or ‘ap’ for profiled steel sheeting. Another key subscript is \(k \), as in

\[M_{Ed} = \gamma_f M_{Ek} \]

Here, the partial factor \(\gamma_f \) is applied to a characteristic bending action effect to obtain a design value, for use in a verification for an ultimate limit state. Thus ‘k’ implies that a partial factor (\(\gamma \)) has not been applied, and ‘d’ implies that it has been. This distinction is made for actions and resistances, as well as for the action effect shown here.