Cellular Ceramics

Structure, Manufacturing,
Properties and Applications

Edited by
Michael Scheffler, Paolo Colombo
Cellular Ceramics

Edited by

M. Scheffler, P. Colombo
Cellular Ceramics

Structure, Manufacturing, Properties and Applications

Edited by
Michael Scheffler, Paolo Colombo
Editors

Dr. Michael Scheffler
Department of Materials Science & Engineering, University of Washington
418 Roberts Hall, Box 352120
Seattle, WA 98195-2120, USA
e-mail: mscheff@gmx.de

Prof. Ing. Paolo Colombo
Dipartimento di Chimica Applicata e Scienza dei Materiali, Università di Bologna
V. le Risorgimento 2, 40136 Bologna, Italy
e-mail: paolo.colombo@unipd.it

Cover Picture

Top left: Periodic cellular structure. Colloidal inks were extruded by robotic deposition. Sub-millimeter filaments of extruded colloidal gel are deposited layer-by-layer to assemble the structure in the z stacking direction followed by drying and sintering. The white-colored x-y-z axes are 400 μm in length (Image courtesy of Prof. J. Lewis, University of Illinois; see also Chapter 2.3).

Bottom left: Hierarchically built porous material. Rattan palm wood was transformed into char and infiltrated at high temperature with liquid silicon retaining its cellular channel structure. The Si/SiC porous material was then used for hydrothermal zeolite crystallisation under partial transformation of the excess silicon. MFI type zeolite was formed in the longitudinal channels of the material. The open channel diameter is 300–320 μm and the zeolite layer is 40–60 μm (Image courtesy of Dr. F. Scheffler, University of Erlangen-Nuremberg, Germany; see Chapter 2.5 and Ref. [29] in Chapter 5.4).

Right: Prototype of a silicon carbide foam heater element. The electrical conductive ceramic foam heats up when electrical power is applied to top and bottom end. Here a power of 750 W was applied. The ceramic foam is 30 mm in diameter (Photo taken by Friedrich Weimer, Dresden. Image courtesy of J. Adler, Fraunhofer-IKTS, Dresden, Germany).

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by
Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Printed in the Federal Republic of Germany.
Printed on acid-free paper.

Typesetting Kühn & Weyh, Satz und Medien, Freiburg
Printing Strauss GmbH, Mörlenbach
Bookbinding J. Schäffer GmbH i. G., Grünstadt

ISBN-10: 3-527-31320-6
Foreword

For many years, the presence of porosity in ceramics was often seen to be problematic and a significant scientific effort was made to devise processing routes that produced ceramics with zero porosity. An exception to this philosophy was the refractory industry, in which it was understood that the presence of porosity is critical in controlling thermal conductivity. A sophisticated example of this concept was the development of refractory tiles for the thermal protection system of the Space Shuttle. In other branches of materials science, similar ideas were recognized. For example, rigid and flexible foams had been developed in polymer science and engineering. In these materials, porosity is controlled to optimize the elastic behavior and weight. In more recent times, scientific developments have touched on new areas such as biomimetics, in which scientists aim to duplicate natural structures. There has also been the push (and pull) to design materials and devices at smaller scale levels. Materials are becoming multifunctional with designed hierarchical structures, and porous ceramics can be seen in this light. The challenge now is for materials scientists to produce ceramics with porosity of any fraction, shape, and size. This also leads to new directions in the scientific understanding of porous structures and their properties. For the above reasons and my personal involvement in this field, I am pleased to see this new book on porous ceramics. This book takes a broad view of the field, while still allowing some detailed scientific aspects to be addressed. The book considers novel processing approaches, structure characterization, advances in understanding structure–property relationships and the challenges in all these areas. It is interesting to see the structural variety that forms the "palette" for the materials scientist and the wide range of properties that are controlled by porosity and therefore require careful optimization. Finally, the book gives examples of technologies in which porous ceramics are being exploited and the demands that arise as products move to commercial use. I applaud the editors for their vision and the authors for sharing their insight. I wish you a successful outcome for your efforts.

David J. Green
State College, Pennsylvania, USA
October 29, 2004
Contents

Preface XIX

List of Contributors XXI

Part 1 Introduction 1

1.1 Cellular Solids – Scaling of Properties 3
 Michael F. Ashby
 1.1.1 Introduction 3
 1.1.2 Cellular or “Lattice” Materials 4
 1.1.3 Bending-Dominated Structures 5
 1.1.3.1 Mechanical Properties 6
 1.1.3.2 Thermal Properties 9
 1.1.3.3 Electrical Properties 10
 1.1.4 Maxwell’s Stability Criterion 10
 1.1.5 Stretch-Dominated Structures 12
 1.1.6 Summary 16

1.2 Liquid Foams – Precursors for Solid Foams 18
 Denis Weaire, Simon Cox, and Ken Brakke
 1.2.1 The Structure of a Liquid Foam 18
 1.2.2 The Elements of Liquid Foam Structure 21
 1.2.3 Real Liquid Foams 24
 1.2.4 Quasistatic Processes 24
 1.2.5 Beyond Quasistatics 26
 1.2.6 Summary 28
Part 2 Manufacturing 31

2.1 Ceramics Foams 33
Jon Binner

2.1.1 Introduction 33
2.1.2 Replication Techniques 34
2.1.2.1 Slurry Coating and Combustion of Polymer Foams 34
2.1.2.2 Pyrolysis and CVD Coating of Polymer Foams 38
2.1.2.3 Structure of Reticulated Ceramics 39
2.1.3 Foaming Techniques 42
2.1.3.1 Incorporation of an External Gas Phase 42
2.1.3.2 In Situ Gas Evolution 46
2.1.3.3 Gelation 49
2.1.3.4 Ceramic Foam Structure 51
2.1.4 Other Techniques 52
2.1.6 Summary 54

2.2 Honeycombs 57
John Wight

2.2.1 Introduction 57
2.2.2 Forming the Honeycomb Geometry 57
2.2.2.1 Background 57
2.2.2.2 Honeycomb Extrusion Die 59
2.2.2.3 Nonextrusion Fabrication Processes 62
2.2.3 Composition 63
2.2.3.1 Paste 63
2.2.3.2 Mixing 64
2.2.3.3 The Binder 65
2.2.4 Thermal Processing 66
2.2.4.1 Diffusion: Drying and Debinding 66
2.2.4.2 Melt Manipulation 67
2.2.4.3 Sinter Shrinkage Manipulation 68
2.2.5 Post-Extrusion Forming 69
2.2.5.1 Reduction Extrusion 70
2.2.5.2 Hot Draw Reduction 73
2.2.6 Summary 82

2.3 Three-Dimensional Periodic Structures 87
Jennifer A. Lewis and James E. Smay

2.3.1 Introduction 87
2.3.2 Direct-Write Assembly 87
2.3.3 Colloidal Inks 89
2.3.4 Ink Flow during Deposition 91
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5</td>
<td>Shape Evolution of Spanning Filaments</td>
<td>94</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Direct-Write Assembly of 3D Periodic Structures</td>
<td>96</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Summary</td>
<td>99</td>
</tr>
<tr>
<td>2.4</td>
<td>Connected Fibers: Fiber Felts and Mats</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Janet B. Davis and David B. Marshall</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Oxide Fibers</td>
<td>102</td>
</tr>
<tr>
<td>2.4.2.1</td>
<td>Melt-Blown Silica Fibers</td>
<td>102</td>
</tr>
<tr>
<td>2.4.2.2</td>
<td>Blown Alumina–Silica Fibers</td>
<td>104</td>
</tr>
<tr>
<td>2.4.2.3</td>
<td>Drawn Alumina–Borosilicate Fibers</td>
<td>105</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Fiber Product Forms</td>
<td>106</td>
</tr>
<tr>
<td>2.4.3.1</td>
<td>Continuous Monofilaments</td>
<td>107</td>
</tr>
<tr>
<td>2.4.3.2</td>
<td>Fiber Mat</td>
<td>107</td>
</tr>
<tr>
<td>2.4.3.3</td>
<td>Bulk Fiber</td>
<td>109</td>
</tr>
<tr>
<td>2.4.4</td>
<td>High-Performance Insulation for Space Vehicles</td>
<td>109</td>
</tr>
<tr>
<td>2.4.4.1</td>
<td>Rigid Space Shuttle Tiles</td>
<td>110</td>
</tr>
<tr>
<td>2.4.4.2</td>
<td>Flexible Insulation Blankets</td>
<td>116</td>
</tr>
<tr>
<td>2.4.4.3</td>
<td>Innovations in Thermal Protection Systems</td>
<td>117</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Summary</td>
<td>120</td>
</tr>
<tr>
<td>2.5</td>
<td>Microcellular Ceramics from Wood</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Heino Sieber and Mrityunjay Singh</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>Introduction</td>
<td>122</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Fabrication of Porous Biocarbon Templates</td>
<td>124</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Preparation of Carbide-Based Biomorphous Ceramics</td>
<td>126</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Processing by Silicon-Melt Infiltration</td>
<td>127</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Gas-Phase Processing</td>
<td>129</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Preparation of Oxide-Based Biomorphous Ceramics</td>
<td>131</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Summary</td>
<td>134</td>
</tr>
<tr>
<td>2.6</td>
<td>Carbon Foams</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>James Klett</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>2.6.2</td>
<td>History</td>
<td>137</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Terminology</td>
<td>138</td>
</tr>
<tr>
<td>2.6.3.1</td>
<td>Carbon</td>
<td>139</td>
</tr>
<tr>
<td>2.6.3.2</td>
<td>Graphite</td>
<td>139</td>
</tr>
<tr>
<td>2.6.3.3</td>
<td>Graphitization</td>
<td>139</td>
</tr>
<tr>
<td>2.6.3.4</td>
<td>Foam</td>
<td>140</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Foaming Processes</td>
<td>141</td>
</tr>
<tr>
<td>2.6.4.1</td>
<td>Thermosetting Precursors</td>
<td>141</td>
</tr>
<tr>
<td>2.6.4.2</td>
<td>Thermoplastic Precursors</td>
<td>144</td>
</tr>
</tbody>
</table>
2.6.5 Properties of Carbon and Graphite Foam 153
2.6.6 Summary 155

2.7 Glass Foams 158
Giovanni Scarinci, Giovanna Brusatin, Enrico Bernardo

2.7.1 Introduction 158
2.7.2 Historical Background 158
2.7.3 Starting Glasses 160
2.7.4 Modern Foaming Process 161
2.7.4.1 Initial Particle Size of the Glass and the Foaming Agent 161
2.7.4.2 Heating Rate 163
2.7.4.3 Foaming Temperature 164
2.7.4.4 Heat-Treatment Time 164
2.7.4.5 Chemical Dissolved Oxygen 164
2.7.4.6 Cooling Rate 165
2.7.5 Foaming Agents 166
2.7.5.1 Foaming by Thermal Decomposition 166
2.7.5.2 Foaming by Reaction 167
2.7.6 Glass Foam Products 170
2.7.7 Alternative Processes and Products 171
2.7.7.1 Foams from Evaporation of Metals 172
2.7.7.2 High-Silica Foams from Phase-Seperating Glasses 172
2.7.7.3 Microwave Heating 172
2.7.7.4 Glass Foam from Silica Gel 173
2.7.7.5 High-Density Glass Foam 173
2.7.7.6 Partially Crystallized Glass Foam 173
2.7.7.7 Foaming of CRT Glasses 174
2.7.8 Summary 175

2.8 Hollow Spheres 177
Srinivasa Rao Boddapati and Rajendra K. Bordia

2.8.1 Introduction 177
2.8.2 Processing Methods 178
2.8.2.1 Sacrificial-Core Method 178
2.8.2.2 Layer-by-Layer Deposition 179
2.8.2.3 Emulsion/Sol–Gel Method 182
2.8.2.4 Spray and Coaxial-Nozzle Techniques 185
2.8.2.5 Reaction-Based and Other Methods 188
2.8.3 Cellular Ceramics from Hollow Spheres (Syntactic Foams) 188
2.8.4 Properties 188
2.8.5 Applications 189
2.8.6 Summary 190
2.9 Cellular Concrete 193

Michael W. Grutzeck

2.9.1 Introduction 193
2.9.2 Types of Cellular Concrete 194
2.9.2.1 Low Temperature Cured Cellular Concrete 195
2.9.2.2 Autoclave-Cured Cellular Concrete 197
2.9.3 Per-Capita Consumption 198
2.9.4 Overview of Cellular Concrete 199
2.9.4.1 The Gas Phase 199
2.9.4.2 The Matrix Phase 200
2.9.5 Portland Cement 206
2.9.5.1 History 207
2.9.5.2 Fabrication of Portland Cement 207
2.9.5.3 Hydration 208
2.9.6 Properties of Calcium Silicate Hydrate in Cellular Concretes 211
2.9.6.1 Cast-in-Place or Precast Cellular Concrete 212
2.9.6.2 Autoclaved Aerated Concrete (AAC) 214
2.9.7 Durability of Cellular Concrete 219
2.9.8 Summary 221

Part 3 Structure 225

3.1 Characterization of Structure and Morphology 227

Steven Mullens, Jan Luyten, and Juergen Zeschky

3.1.1 Introduction and Theoretical Background 227
3.1.1.1 The Importance of Foam Structure Characterization 227
3.1.1.2 Structure-Dependent Properties 228
3.1.1.3 Parameters Describing the Structure of the Foams 230
3.1.2 Characterization of Foam Pore Structure 232
3.1.2.1 Sample Preparation 233
3.1.2.2 Characterization Methods 233
3.1.2.3 Comparison of Methods 262
3.1.3 Summary 263

3.2 Modeling Structure–Property Relationships in Random Cellular Materials 267

Anthony P. Roberts

3.2.1 Introduction 267
3.2.2 Theoretical Structure–Property Relations 268
3.2.3 Modeling and Measuring Structure 273
3.2.4 Computational Structure–Property Relations 280
3.2.5 Summary 285
Part 4 Properties 289

4.1 Mechanical Properties 291

Roy Rice

4.1.1 Introduction 291

4.1.2 Modeling the Porosity Dependence of Mechanical Properties of Cellular Ceramics 292

4.1.2.1 Earlier Models 292

4.1.2.2 Gibson–Ashby Models 294

4.1.2.3 Minimum Solid Area (MSA) Models 295

4.1.2.4 Computer Models 298

4.1.3 Porosity Effects on Mechanical Properties of Cellular Ceramics 299

4.1.3.1 Honeycomb Structures 299

4.1.3.2 Foams and Related Structures 301

4.1.4 Discussion 307

4.1.4.1 Measurement–Characterization Issues 307

4.1.4.2 Impact of Fabrication on Microstructure 308

4.1.4.3 Porosity–Property Trade-Offs 309

4.1.5 Summary 310

4.2 Permeability 313

Murilo Daniel de Mello Innocentini, Pilar Sepulveda, and Fernando dos Santos Ortega

4.2.1 Introduction 313

4.2.2 Description of Permeability 313

4.2.3 Experimental Evaluation of Permeability 315

4.2.4 Models for Predicting Permeability 317

4.2.4.1 Granular Media 318

4.2.4.2 Fibrous Media 320

4.2.4.3 Cellular Media 321

4.2.5 Viscous and Inertial Flow Regimes in Porous Media 331

4.2.6 Summary 338

4.3 Thermal Properties 342

Thomas Fend, Dimosthenis Trimis, Robert Pitz-Paal, Bernhard Hoffschmidt, and Oliver Reutter

4.3.1 Introduction 342

4.3.2 Thermal Conductivity 342

4.3.2.1 Experimental Methods to Determine the Effective Thermal Conductivity without Flow 345

4.3.2.2 Method to Determine the Effective Thermal Conductivity with Flow 348

4.3.3 Specific Heat Capacity 350

4.3.4 Thermal Shock 350