CAPEX Excellence

Optimizing Fixed Asset Investments

Dr Hauke Hansen
Dr Wolfgang Huhn
Mr Olivier Legrand
Dr Daniel Steiners
Dr Thomas Vahlenkamp
CAPEX Excellence
CAPEX Excellence

Optimizing Fixed Asset Investments

Dr Hauke Hansen
Dr Wolfgang Huhn
Mr Olivier Legrand
Dr Daniel Steiners
Dr Thomas Vahlenkamp
Contents

Acknowledgements ix

About the Authors xi

PART I WHY INVESTMENTS MATTER 1

1 Introduction 3
1.1 Investments: the forgotten value lever 3
1.1.1 The early bird catches the worm 4
1.2 A bird’s-eye view of the book content 6
1.2.1 Part I: Why investments matter 6
1.2.2 Part II: Getting investments right 7
1.2.3 Part III: Right allocation: Managing a company’s investment portfolio 9
1.3 Why investments matter: the importance and structure of capital investments 10
1.3.1 The relevance of capital investments 10
1.3.2 The structure of capital investments 16
1.3.3 Time dependence of capital investments 21
1.3.4 The future of capital investments 26
1.4 Summary 27

Appendix 1.1: Wavelet analysis: Extracting frequency information from investment timelines 27

References 29

PART II GETTING INVESTMENTS RIGHT 31

2 Right Positioning: Managing an Asset’s Exposure to Economic Risk 33
2.1 Preface 33
2.2 Asset exposure determines the achievable return on an investment 33
2.3 Five levels of protection determine the asset exposure 35
2.4 A simple scoring metric to measure asset exposure 37
5.2.1 Fixed cost leverage 104
5.2.2 Decreasing unit costs 105
5.2.3 Equipment utilization/chunkiness of capacity 106
5.2.4 Critical size 107
5.3 Determining diseconomies of scale 107
5.3.1 Cost elements 109
5.4 Risk elements 111
5.4.1 Utilization risks 113
5.4.2 Market reaction risks 115
5.4.3 Technology risks 116
5.4.4 Timing risks 116
5.5 An approach for finding the “sweet spot” 117
5.5.1 Scale effect model 117
5.6 Real-life examples 118
5.6.1 Automotive industry case example 118
5.6.2 Base chemicals case example 119
5.7 Summary 120
Reference 121

6 Right Location: Getting the Most from Government Incentives 123
6.1 Government incentives: An overview 124
6.1.1 Creating public-private, win-win situations 125
6.2 Common types of incentive instruments 127
6.2.1 Subsidies 131
6.2.2 Financing support 131
6.2.3 Tax relief 133
6.2.4 Other types of government incentives 134
6.3 The financial impact of incentives: A modeling approach 136
6.3.1 General impact of subsidies 137
6.3.2 General impact of financing support 138
6.3.3 General impact of tax relief 138
6.3.4 Specific impact of incentives on different industries 139
6.4 Geographical differences in incentive structures 140
6.5 Managing government incentives 141
6.6 Summary 142
References 142

7 Right Design: How to Make Investments Lean and Flexible 143
7.1 Lean design as a competitive advantage 143
7.1.1 The lean way: Moving from capital investment projects to a lean design system 143
7.2 The three dimensions of a lean capital investment system 146
7.3 Dimension 1: The technical system 147
7.3.1 Start with project objectives, design principles, and target setting 147
7.3.2 Value engineering and lean tools 149
7.3.3 Design optimization 152
7.3.4 From the basic design to start of production 153
7.3.5 Anchoring tools and practices to formal standards 155
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 Dimensions 2 & 3: Management infrastructure, mindset and behavior</td>
</tr>
<tr>
<td>7.4.1 Project organization and performance management</td>
</tr>
<tr>
<td>7.4.2 Institutionalization and learning</td>
</tr>
<tr>
<td>7.4.3 Adapting the system to local specifics: Project design cannot be “one size fits all”</td>
</tr>
<tr>
<td>7.4.4 Getting started</td>
</tr>
<tr>
<td>7.5 Flexibility: Just what customers and the company need and no more</td>
</tr>
<tr>
<td>7.5.1 Macro-level flexibility: modularity in plant design to ensure flexible, cost-efficient assets</td>
</tr>
<tr>
<td>7.5.2 Midi-level flexibility in plant design: cater for product portfolio diversity</td>
</tr>
<tr>
<td>7.5.3 Micro-level flexibility in plant design: design for iso-productivity</td>
</tr>
<tr>
<td>7.6 How to avoid creating a front-page disaster: Anticipating what can go wrong</td>
</tr>
<tr>
<td>7.6.1 Performance management and decision making</td>
</tr>
<tr>
<td>7.6.2 Tools which every company and project team need to master</td>
</tr>
<tr>
<td>7.6.3 Cross-functional coordination</td>
</tr>
<tr>
<td>7.7 Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART III</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Right Financing: Shaping the Optimal Finance Portfolio</td>
</tr>
<tr>
<td>8.1 Why Financing Matters</td>
</tr>
<tr>
<td>8.2 Three-Step Financing Approach</td>
</tr>
<tr>
<td>8.2.1 Step 1: Evaluating the investment’s cash flow parameters</td>
</tr>
<tr>
<td>8.2.2 Step 2: Assessing investment risks</td>
</tr>
<tr>
<td>8.2.3 Step 3: Composing the financing portfolio</td>
</tr>
<tr>
<td>8.3 Summary</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

9 Right Allocation: How to Allocate Money Within the Company	187
9.1 Key requirements for capital allocation	188
9.2 Four models of the corporate center role in shaping the investment portfolio	192
9.3 Capital allocation approach for operators and strategic controllers	195
9.3.1 Step 1: Treat special projects as high priority	196
9.3.2 Step 2: Allocate remaining capital to business units	197
9.3.3 Step 3: Business units distribute capital to individual investments	199
9.3.4 Step 4: Implement a capital assurance process	201
9.3.5 Improving the “capital allocation key”	203
9.3.6 Capital allocation backbone	204
9.4 Capital allocation approach for strategic architects and financial holding structures	210
9.5 Summary	213
References	213

Index | 215 |
Acknowledgements

No book is solely the effort of its authors and this book is certainly no exception. Several people worked closely with us, providing support that was essential to the completion of the book. Therefore a big thank you to:

Andreas Gupper, Franck Temam, Herbert Pohl, Jörg Doege, Juliane Bardt, Marcus Klemm, Olivier Cazeaux, Robin Schlinkert, Sebastian Serfas, Stefan Buchkremer, Thilo Dückert, Thomas Hundertmark, Ute Roelen, and Volker Jacobsen for helping us develop the ideas and the material that led to the chapters in this book.

Colleagues from all around the world who helped us with discussions on specific topics or provided case examples.

Our assistants, Carolin Bindert, Dagmar Krüger, Elif Ebcı, Jana Stövesand, and Sabrina Michel, for help in preparing the manuscript and coordinating the flow of paper, e-mails, phone calls and meetings.

Our manuscript editors Ivan Hutnik and Jürgen Raspel for their contributions to the clarity and crispness of many chapters.

The team at John Wiley & Sons, including Karen Weller, Kerry Batcock and Jenny McCall, for their patience and understanding during the manuscript production process.

Finally, we would like to thank our wives, Angela Vockel, Dunja Vahlenkamp, Gesa Hansen, Petra Steiners, and Virginie Legrand, for their kind understanding and persistent support.
About the Authors

Hauke Hansen works as a production manager for ASML in Veldhoven (NL). Prior to his current job he was an Associate Principal in McKinsey’s Düsseldorf office. He served high-tech, logistics and telecom companies and supported several multi-billion dollar investment projects. He holds a PhD in physics from the University of Konstanz and was a Fulbright Scholar at the California Institute of Technology.

Wolfgang Huhn is a Director in McKinsey’s Frankfurt office. He primarily serves clients in the high-tech industry as well as in energy. Wolfgang is a member of the Business Technology Office where he leads the industrial sector in Europe and he also leads the European Product Development Practice. Prior to joining McKinsey, Wolfgang studied electrical engineering and physics at Aachen and in the UK and obtained his PhD in Physics from the RWTH Aachen. From 1998 to 2000, Wolfgang was the CEO of a VC-backed company.

Olivier Legrand is a Principal in McKinsey’s Paris office. He serves clients in the transportation, steel and aluminum industries as well as in consumer goods and energy. Olivier co-leads McKinsey’s global capital productivity group. Olivier holds an MBA from Stanford Business School.

Daniel Steiners is an Associate Principal in McKinsey’s Düsseldorf office. He serves clients in electric power and chemicals and is a co-leader of McKinsey’s European capital productivity group. Daniel received a diploma in business administration from Münster University and a PhD in management accounting from the European Business School in Oestrich-Winkel.

Thomas Vahlenkamp is a Director in McKinsey’s Düsseldorf office. He serves clients in the coal, oil, gas, power, and chemicals as well as transportation industries. Thomas is the sector leader of the Energy and Materials Practice in Germany and a member of the leadership group of the European Electric Power and Natural Gas Practice. His educational background is in polymer chemistry. He holds a degree from the Technical University of Aachen (RWTH) and a doctorate from the Max Planck Institute for Polymer Research.
Part I

Why Investments Matter