A fully updated version of the popular *Introduction to Tribology*, the second edition of this leading tribology text introduces the major developments in the understanding and interpretation of friction, wear and lubrication. Considerations of friction and wear have been fully revised to include recent analysis and data work, and friction mechanisms have been reappraised in light of current developments.

In this edition, the breakthroughs in tribology at the nano- and micro-level as well as recent developments in nanotechnology and magnetic storage technologies are introduced. A new chapter on the emerging field of green tribology and biomimetics is included.

Key features:
- Introduces the topic of tribology from a mechanical engineering, mechanics and materials science points of view
- Newly updated chapter covers both the underlying theory and the current applications of tribology to industry
- Updated write-up on nanotribology and nanotechnology and introduction of a new chapter on green tribology and biomimetics

Dr Bharat Bhushan is Ohio Eminent Scholar and The Howard D. Winbigler Professor as well as Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics at The Ohio State University. During his career he has received a number of awards and accolades as well as being central to teaching and formulating the curriculum in Tribology-related topics. He is a Fellow and Life Member of American Society of Mechanical Engineers, Society of Tribologists and Lubrication Engineers, Institute of Electrical and Electronics Engineers, as well as various other professional societies.
INTRODUCTION TO TRIBOLOGY
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bhushan</td>
<td>Introduction to Tribology, 2nd Edition</td>
<td>March 2013</td>
</tr>
<tr>
<td>Bhushan</td>
<td>Principles and Applications to Tribology, 2nd Edition</td>
<td>March 2013</td>
</tr>
<tr>
<td>Lugo</td>
<td>Grease Lubrication in Rolling Bearings</td>
<td>January 2013</td>
</tr>
<tr>
<td>Honary and Richter</td>
<td>Biobased Lubricants and Greases: Technology and Products</td>
<td>April 2011</td>
</tr>
<tr>
<td>Martin and Ohmae</td>
<td>Nanolubricants</td>
<td>April 2008</td>
</tr>
<tr>
<td>Stachowiak (ed)</td>
<td>Wear: Materials, Mechanisms and Practice</td>
<td>November 2005</td>
</tr>
<tr>
<td>Cartier</td>
<td>Handbook of Surface Treatment and Coatings</td>
<td>May 2003</td>
</tr>
<tr>
<td>Sherrington, Rowe and Wood (eds)</td>
<td>Total Tribology: Towards an Integrated Approach</td>
<td>December 2002</td>
</tr>
<tr>
<td>Kragelsky and Stolarski and Tobe</td>
<td>Tribology: Lubrication, Friction and Wear</td>
<td>April 2001</td>
</tr>
</tbody>
</table>
INTRODUCTION TO TRIBOLOGY
SECOND EDITION

Bharat Bhushan
Ohio Eminent Scholar and the Howard D. Winbigler Professor
Director, Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics
The Ohio State University
Columbus, Ohio
USA
To my wife Sudha, my son Ankur and my daughter Noopur
Contents

About the Author xv
Foreword xvii
Series Preface xix
Preface to the Second Edition xxi
Preface to the First Edition xxiii

1 Introduction 1
1.1 Definition and History of Tribology 1
1.2 Industrial Significance of Tribology 3
1.3 Origins and Significance of Micro/Nanotribology 4
1.4 Organization of the Book 6
References 7

2 Solid Surface Characterization 9
2.1 The Nature of Surfaces 9
2.2 Physico-Chemical Characteristics of Surface Layers 10
2.2.1 Deformed Layer 10
2.2.2 Chemically Reacted Layer 11
2.2.3 Physisorbed Layer 12
2.2.4 Chemisorbed Layer 13
2.2.5 Methods of Characterization of Surface Layers 13
2.3 Analysis of Surface Roughness 14
2.3.1 Average Roughness Parameters 16
2.3.2 Statistical Analyses 23
2.3.3 Fractal Characterization 45
2.3.4 Practical Considerations in Measurement of Roughness Parameters 47
2.4 Measurement of Surface Roughness 51
2.4.1 Mechanical Stylus Method 52
2.4.2 Optical Methods 56
2.4.3 Scanning Probe Microscopy (SPM) Methods 67
2.4.4 Fluid Methods 76
2.4.5 Electrical Method 77
2.4.6 Electron Microscopy Methods 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.7 Analysis of Measured Height Distribution</td>
<td>78</td>
</tr>
<tr>
<td>2.4.8 Comparison of Measurement Methods</td>
<td>78</td>
</tr>
<tr>
<td>2.5 Closure</td>
<td>84</td>
</tr>
<tr>
<td>Problems</td>
<td>85</td>
</tr>
<tr>
<td>References</td>
<td>86</td>
</tr>
<tr>
<td>Further Reading</td>
<td>88</td>
</tr>
<tr>
<td>3 Contact Between Solid Surfaces</td>
<td>91</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>3.2 Analysis of the Contacts</td>
<td>92</td>
</tr>
<tr>
<td>3.2.1 Single Asperity Contact of Homogeneous and Frictionless Solids</td>
<td>92</td>
</tr>
<tr>
<td>3.2.2 Single Asperity Contact of Layered Solids in Frictionless and Frictional Contacts</td>
<td>105</td>
</tr>
<tr>
<td>3.2.3 Multiple Asperity Dry Contacts</td>
<td>117</td>
</tr>
<tr>
<td>3.3 Measurement of the Real Area of Contact</td>
<td>146</td>
</tr>
<tr>
<td>3.3.1 Measurement Techniques</td>
<td>146</td>
</tr>
<tr>
<td>3.3.2 Typical Measurements</td>
<td>147</td>
</tr>
<tr>
<td>3.4 Closure</td>
<td>150</td>
</tr>
<tr>
<td>Problems</td>
<td>152</td>
</tr>
<tr>
<td>References</td>
<td>153</td>
</tr>
<tr>
<td>Further Reading</td>
<td>155</td>
</tr>
<tr>
<td>4 Adhesion</td>
<td>157</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>4.2 Solid–Solid Contact</td>
<td>158</td>
</tr>
<tr>
<td>4.2.1 Covalent Bond</td>
<td>161</td>
</tr>
<tr>
<td>4.2.2 Ionic or Electrostatic Bond</td>
<td>161</td>
</tr>
<tr>
<td>4.2.3 Metallic Bond</td>
<td>162</td>
</tr>
<tr>
<td>4.2.4 Hydrogen Bond</td>
<td>164</td>
</tr>
<tr>
<td>4.2.5 van der Waals Bond</td>
<td>164</td>
</tr>
<tr>
<td>4.2.6 Free Surface Energy Theory of Adhesion</td>
<td>164</td>
</tr>
<tr>
<td>4.2.7 Polymer Adhesion</td>
<td>171</td>
</tr>
<tr>
<td>4.3 Liquid-Mediated Contact</td>
<td>172</td>
</tr>
<tr>
<td>4.3.1 Idealized Geometries</td>
<td>173</td>
</tr>
<tr>
<td>4.3.2 Multiple-Asperity Contacts</td>
<td>186</td>
</tr>
<tr>
<td>4.4 Closure</td>
<td>194</td>
</tr>
<tr>
<td>Problems</td>
<td>195</td>
</tr>
<tr>
<td>References</td>
<td>195</td>
</tr>
<tr>
<td>Further Reading</td>
<td>197</td>
</tr>
<tr>
<td>5 Friction</td>
<td>199</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>199</td>
</tr>
<tr>
<td>5.2 Solid–Solid Contact</td>
<td>201</td>
</tr>
<tr>
<td>5.2.1 Rules of Sliding Friction</td>
<td>201</td>
</tr>
<tr>
<td>5.2.2 Basic Mechanisms of Sliding Friction</td>
<td>206</td>
</tr>
</tbody>
</table>
5.2.3 Other Mechanisms of Sliding Friction 222
5.2.4 Friction Transitions During Sliding 224
5.2.5 Static Friction 226
5.2.6 Stick-Slip 228
5.2.7 Rolling Friction 232
5.3 Liquid-Mediated Contact 236
5.4 Friction of Materials 239
 5.4.1 Friction of Metals and Alloys 240
 5.4.2 Friction of Ceramics 244
 5.4.3 Friction of Polymers 248
 5.4.4 Friction of Solid Lubricants 254
5.5 Closure 264
 Problems 266
 References 267
 Further Reading 271

6 Interface Temperature of Sliding Surfaces 273
6.1 Introduction 273
6.2 Thermal Analysis 274
 6.2.1 Fundamental Heat Conduction Solutions 275
 6.2.2 High Contact-Stress Condition \((A_r/A_a \sim 1)\) (Individual Contact) 276
 6.2.3 Low Contact-Stress Condition \((A_r/A_a \ll 1)\) (Multiple Asperity Contact) 284
6.3 Interface Temperature Measurements 298
 6.3.1 Thermocouple and Thin-Film Temperature Sensors 298
 6.3.2 Radiation Detection Techniques 302
 6.3.3 Metallographic Techniques 308
 6.3.4 Liquid Crystals 308
6.4 Closure 309
 Problems 311
 References 312

7 Wear 315
7.1 Introduction 315
7.2 Types of Wear Mechanism 316
 7.2.1 Adhesive Wear 316
 7.2.2 Abrasive Wear (by Plastic Deformation and Fracture) 328
 7.2.3 Fatigue Wear 342
 7.2.4 Impact Wear 349
 7.2.5 Chemical (Corrosive) Wear 359
 7.2.6 Electrical-Arc-Induced Wear 361
 7.2.7 Fretting and Fretting Corrosion 363
7.3 Types of Particles Present in Wear Debris 365
 7.3.1 Plate-Shaped Particles 365
 7.3.2 Ribbon-Shaped Particles 366

9.3 Liquid Lubricants
9.3.1 Principal Classes of Lubricants
9.3.2 Physical and Chemical Properties of Lubricants
9.3.3 Additives

9.4 Greases

9.5 Closure

References
Further Reading

10 Nanotribology
10.1 Introduction
10.2 SFA Studies
10.2.1 Description of an SFA
10.2.2 Static (Equilibrium), Dynamic and Shear Properties of Molecularly Thin Liquid Films

10.3 AFM/FFM Studies
10.3.1 Description of AFM/FFM and Various Measurement Techniques
10.3.2 Surface Imaging, Friction, and Adhesion
10.3.3 Wear, Scratching, Local Deformation, and Fabrication/Machining
10.3.4 Indentation
10.3.5 Boundary Lubrication

10.4 Atomic-Scale Computer Simulations
10.4.1 Interatomic Forces and Equations of Motion
10.4.2 Interfacial Solid Junctions
10.4.3 Interfacial Liquid Junctions and Confined Films

10.5 Closure
References
Further Reading

11 Friction and Wear Screening Test Methods
11.1 Introduction
11.2 Design Methodology
11.2.1 Simulation
11.2.2 Acceleration
11.2.3 Specimen Preparation
11.2.4 Friction and Wear Measurements

11.3 Typical Test Geometries
11.3.1 Sliding Friction and Wear Tests
11.3.2 Abrasion Tests
11.3.3 Rolling-Contact Fatigue Tests
11.3.4 Solid-Particle Erosion Test
11.3.5 Corrosion Tests

References
Further Reading

9.3 Liquid Lubricants

- **9.3.1 Principal Classes of Lubricants**
- **9.3.2 Physical and Chemical Properties of Lubricants**
- **9.3.3 Additives**

9.4 Greases

9.5 Closure

References
Further Reading

10 Nanotribology

- **10.1 Introduction**
- **10.2 SFA Studies**
 - **10.2.1 Description of an SFA**
 - **10.2.2 Static (Equilibrium), Dynamic and Shear Properties of Molecularly Thin Liquid Films**

- **10.3 AFM/FFM Studies**
 - **10.3.1 Description of AFM/FFM and Various Measurement Techniques**
 - **10.3.2 Surface Imaging, Friction, and Adhesion**
 - **10.3.3 Wear, Scratching, Local Deformation, and Fabrication/Machining**
 - **10.3.4 Indentation**
 - **10.3.5 Boundary Lubrication**

- **10.4 Atomic-Scale Computer Simulations**
 - **10.4.1 Interatomic Forces and Equations of Motion**
 - **10.4.2 Interfacial Solid Junctions**
 - **10.4.3 Interfacial Liquid Junctions and Confined Films**

- **10.5 Closure**

References
Further Reading

11 Friction and Wear Screening Test Methods

- **11.1 Introduction**
- **11.2 Design Methodology**
 - **11.2.1 Simulation**
 - **11.2.2 Acceleration**
 - **11.2.3 Specimen Preparation**
 - **11.2.4 Friction and Wear Measurements**

- **11.3 Typical Test Geometries**
 - **11.3.1 Sliding Friction and Wear Tests**
 - **11.3.2 Abrasion Tests**
 - **11.3.3 Rolling-Contact Fatigue Tests**
 - **11.3.4 Solid-Particle Erosion Test**
 - **11.3.5 Corrosion Tests**

References
Further Reading
12 Tribological Components and Applications 631
12.1 Introduction 631
12.2 Common Tribological Components 631
 12.2.1 Sliding-Contact Bearings 631
 12.2.2 Rolling-Contact Bearings 633
 12.2.3 Seals 635
 12.2.4 Gears 637
 12.2.5 Cams and Tappets 640
 12.2.6 Piston Rings 641
 12.2.7 Electrical Brushes 643
12.3 MEMS/NEMS 644
 12.3.1 MEMS 647
 12.3.2 NEMS 653
 12.3.3 BioMEMS 654
 12.3.4 Microfabrication Processes 655
12.4 Material Processing 656
 12.4.1 Cutting Tools 656
 12.4.2 Grinding and Lapping 660
 12.4.3 Forming Processes 661
 12.4.4 Cutting Fluids 661
12.5 Industrial Applications 662
 12.5.1 Automotive Engines 663
 12.5.2 Gas Turbine Engines 664
 12.5.3 Railroads 668
 12.5.4 Magnetic Storage Devices 669
12.6 Closure 676
References 676
Further Reading 680

13 Green Tribology and Biomimetics 683
13.1 Introduction 683
13.2 Green Tribology 683
 13.2.1 Twelve Principles of Green Tribology 684
 13.2.2 Areas of Green Tribology 685
13.3 Biomimetics 689
 13.3.1 Lessons from Nature 690
 13.3.2 Industrial Significance 693
13.4 Closure 693
References 694
Further Reading 696