Review of the previous edition

“...if it isn’t in this book, it is not worth knowing! (Lecture Notes) Medical Microbiology and Infection is a concise text covering all aspects of basic science through to the clinical aspects of diagnosis and management - it is invaluable.”

Medical Student, Hull-York Medical School

Medical Microbiology Lecture Notes is ideal for medical students, junior doctors, pharmacy students, junior pharmacists, nurses, and those training in the allied health professions. It presents a thorough introduction and overview of this core subject area.

Whether you need to develop your knowledge for clinical practice, or refresh that knowledge in the run up to examinations, Medical Microbiology and Infection Lecture Notes will help foster a systematic approach to the clinical situation for all medical students and hospital doctors.

Medical Microbiology Lecture Notes has been fully revised and updated to include:

- Chapters written by leading experts reflecting current research and teaching practice
- New chapters covering Diagnosis of Infections and Epidemiology and Prevention & Management of Infections
- Integrated full-colour illustrations and clinical images
- A self-assessment section to test understanding

For information on all the titles in the Lecture Notes series, please visit: www.lecturenoteseries.com

Titles of related interest

Medical Microbiology and Infection at a Glance, 4th Edition Gillespie & Bamford 2012 9780470655719
Infectious Disease: Clinical Cases Uncovered McFarland et al 2009 9781405168915

For more information on the complete range of Wiley-Blackwell medical student and junior doctor publishing, please visit: www.wileymedicaleducation.com

To receive automatic updates on Wiley-Blackwell books and journals, join our email list.
Sign up today at www.wiley.com/email

ISBN 978-1-4443-3465-4

www.wiley.com/go/medicine
The Lecture Notes series

The Lecture Notes series provides concise, yet thorough, introductions to core areas of the undergraduate curriculum, covering both the basic science and the clinical approaches that all medical students and junior doctors need to know.

Biomedical Sciences 9781405157117
Cardiology 5e 9781405157087
Clinical Anaesthesia 3e 9781405170383
Clinical Biochemistry 8e 9781405193054
Clinical Medicine 7e 9781405157148
Clinical Pharmacology and Therapeutics 8e 9781405197786
Clinical Skills 4e 9780632065110
Dermatology 10e 9781405195713
Diseases of the Ear, Nose and Throat 10e 9781405145084
Elderly Care Medicine 7e 9781405157124
Emergency Medicine 3e 9781405122733
Endocrinology and Diabetes 9781405153054
Epidemiology and Public Health Medicine 5e 9781405106740
Gastroenterology and Hepatology 9781405183215
General Surgery 11e 9781405139113
Haematology 8e 9781405193054
Human Physiology 5e 9781405136518
Infectious Diseases 6e 9781405106201
Medical Genetics 3e 9781405130035
Medical Law and Ethics 9781405119862
Medical Microbiology and Infection 5e 9781444336564
Neurology 9e 9781405177221
Obstetrics and Gynaecology 3e 9781405178613
Oncology 2e 9781405195133
Ophthalmology 11e 9781444335838
Orthopaedics and Fractures 4e 9781405133296
Paediatrics 8e 9781405145091
Psychiatry 10e 9781405191371
Radiology 9e 9781405195140
Respiratory Medicine 8e 9780470654422
The Social Basis of Medicine 9781405139120
Tropical Medicine 6e 9781405180481
Urology 6e 9781405122702

Get the most from clinical practice, with Clinical Cases Uncovered

No other series is quite like Clinical Cases Uncovered, where you can rehearse for life in clinical practice with easy-to-use and well-instructed walk-through scenarios. Each case is presented as you would see it and the use of real-life experiences means the decisions and outcomes are factually based. Along the way to determining a diagnosis and identifying treatments, you learn about variable symptoms, danger signs and get overviews of all the common, classical and atypical presentations.

Background to the subject and how to approach the patient are covered in an introductory section and once you have worked through the range of cases you can test yourself with a selection of MCQs, EMQs and SAQs. This distinct blend of learning means you will improve time and again, greatly enhancing your decision making skills. With such a wide range of subjects covered you will soon see the benefit of the CCU approach.

The series so far...

Acute Medicine: Clinical Cases Uncovered
Cardiology: Clinical Cases Uncovered
Endocrinology and Diabetes: Clinical Cases Uncovered
Obstetrics and Gynaecology: Clinical Cases Uncovered
Paediatrics: Clinical Cases Uncovered
Psychiatry: Clinical Cases Uncovered
Radiology: Clinical Cases Uncovered
Respiratory Medicine: Clinical Cases Uncovered
Surgery: Clinical Cases Uncovered
Gastroenterology: Clinical Cases Uncovered

Obstetrics and Gynaecology: Clinical Cases Uncovered 978-1-4051-8883-0
Cardiology: Clinical Cases Uncovered 978-1-4051-7800-6
Endocrinology and Diabetes: Clinical Cases Uncovered 978-1-4051-5726-1
General Practice: Clinical Cases Uncovered 978-1-4051-6140-4
Haematology: Clinical Cases Uncovered 978-1-4051-8322-2
Hepatology: Clinical Cases Uncovered 978-1-4443-3246-9
Infectious Disease: Clinical Cases Uncovered 978-1-4051-6891-5
Nephrology: Clinical Cases Uncovered 978-1-4051-8990-3
Neurology: Clinical Cases Uncovered 978-1-4051-6220-3
Medical Microbiology and Infection
Lecture Notes

Edited by

Tom Elliott BM BS BMedSci PhD DSc MRCP FRCPath
Consultant Medical Microbiologist
The Queen Elizabeth Hospital
University Hospitals Birmingham NHS Foundation Trust
Birmingham, UK

Anna Casey BSc PhD
Clinical Research Scientist
Department of Clinical Microbiology
The Queen Elizabeth Hospital
University Hospitals Birmingham NHS Foundation Trust
Birmingham, UK

Peter Lambert BSc PhD DSc
Professor of Microbiology
School of Life and Health Sciences
Aston University
Birmingham, UK

Jonathan Sandoe Mb ChB PhD FRCPath
Consultant Microbiologist and Honorary Senior Lecturer
Department of Microbiology
Leeds Teaching Hospitals NHS Trust and University of Leeds
Leeds, UK

Fifth Edition
Contents

Preface v
Contributors vii

Basic microbiology
1 Basic bacteriology, 3
 Peter Lambert
2 Classification of bacteria, 12
 Peter Lambert
3 Staphylococci, 16
 Tom Elliott and Peter Lambert
4 Streptococci and enterococci, 20
 Anna Casey
5 Clostridia, 26
 Tony Worthington
6 Other Gram-positive bacteria, 30
 Anna Casey
7 Gram-negative cocci, 36
 Jonathan Sandoe
8 Enterobacteriaceae, 40
 Peter Lambert
9 Haemophilus and other fastidious Gram-negative bacteria, 45
 Jonathan Sandoe
10 Pseudomonas, Legionella and other environmental Gram-negative bacilli, 51
 Peter Lambert
11 Campylobacter, Helicobacter and Vibrio, 54
 Martin Skirrow, Cliodna McNulty and Tom Elliott
12 Treponema, Borrelia and Leptospira, 58
 Susan O’Connell
13 Gram-negative anaerobic bacteria, 62
 Peter Lambert
14 Chlamydiaceae, Rickettsia, Coxiella, Mycoplasmataceae and Anaplasmataceae, 64
 Jonathan Sandoe
15 Basic virology, 69
 Peter Mackie
16 Major virus groups, 75
 Peter Mackie
17 Basic mycology and classification of fungi, 93
 Elizabeth Johnson
18 Parasitology: protozoa, 101
 Peter Chiodini
19 Parasitology: helminths, 112
 Peter Chiodini

Antimicrobial agents
20 Antibacterial agents, 127
 Peter Lambert
21 Antifungal agents, 144
 Elizabeth Johnson
22 Antiviral agents, 147
 Eleni Nastouli

Infection
23 Diagnostic laboratory methods, 157
 Tony Worthington
24 Epidemiology and prevention of infection, 167
 Barry Cookson
25 Upper respiratory tract infections, 177
 Jonathan Sandoe
26 Lower respiratory tract infections, 183
 Shruti Khurana
27 Tuberculosis and mycobacteria, 189
 Sumeet Singhania
28 Gastrointestinal infections, 193
 Tariq Iqbal
29 Liver and biliary tract infections, 202
 David Mutimer
30 Urinary tract infections, 207
 Chris Catchpole
31 Genital infections, 210
 Kaveh Manavi
32 Infections of the central nervous system, 220
 Erwin Brown
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 Bacteraemia and bloodstream infections</td>
<td>229</td>
</tr>
<tr>
<td>Tom Elliott</td>
<td></td>
</tr>
<tr>
<td>34 Device-related infections</td>
<td>233</td>
</tr>
<tr>
<td>Tom Elliott</td>
<td></td>
</tr>
<tr>
<td>35 Cardiovascular infections</td>
<td>238</td>
</tr>
<tr>
<td>Richard Watkin</td>
<td></td>
</tr>
<tr>
<td>36 Bone and joint infections</td>
<td>241</td>
</tr>
<tr>
<td>Jonathan Sandoe</td>
<td></td>
</tr>
<tr>
<td>37 Skin and soft-tissue infections</td>
<td>246</td>
</tr>
<tr>
<td>Supriya Narasimhan and Rabih Darouiche</td>
<td></td>
</tr>
<tr>
<td>38 Infections in the compromised host</td>
<td>257</td>
</tr>
<tr>
<td>Tom Elliott</td>
<td></td>
</tr>
<tr>
<td>39 Infections caused by antimicrobial-resistant bacteria</td>
<td>260</td>
</tr>
<tr>
<td>David Livermore</td>
<td></td>
</tr>
<tr>
<td>40 Perinatal and congenital infections</td>
<td>264</td>
</tr>
<tr>
<td>James Gray</td>
<td></td>
</tr>
<tr>
<td>41 Human immunodeficiency virus</td>
<td>271</td>
</tr>
<tr>
<td>Kaveh Manavi</td>
<td></td>
</tr>
<tr>
<td>42 Miscellaneous viral infections</td>
<td>277</td>
</tr>
<tr>
<td>John Cheesbrough</td>
<td></td>
</tr>
</tbody>
</table>

Self-assessment

- Self-assessment questions, 285
- Answers to self-assessment questions, 300

General subject index, 309
Organism index, 317
The magnitude of recent changes in the field of medical microbiology has warranted this fifth edition of *Lecture Notes: Medical Microbiology and Infection*. While these changes have been encompassed in new chapters, this edition continues to maintain the well-received and user-friendly format of earlier editions, highlighting the pertinent key facts in medical microbiology and providing a sound foundation of knowledge which students can build on. The book for the first time is multi-authored, with chapters being written by recognised experts in their field.

This fifth edition is arranged into three main sections: basic microbiology, antimicrobial agents and infection. It covers all aspects of microbiology, including bacteriology, virology, mycology and parasitology. As in previous editions, the text is supported throughout with colour figures to illustrate the key points.

This book is written specifically for students in medicine, biomedicine, biology, dentistry, science and also pharmacology, who have an interest in medical microbiology at both undergraduate and postgraduate levels. In addition, this book will serve as a useful *aide mémoire* for doctors sitting MRCS and MRCP examinations, as well as other healthcare professionals, for example biomedical scientists, working towards state registration.

Contributors

Erwin Brown Consultant Microbiologist, Department of Medical Microbiology, Frenchay Hospital, North Bristol NHS Trust, Bristol, UK
Anna Casey Clinical Research Scientist, Department of Clinical Microbiology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Chris Catchpole Consultant Microbiologist, Department of Clinical Microbiology, Worcestershire Royal Hospital, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
John Cheesbrough Consultant Microbiologist, Department of Clinical Microbiology, Worcestershire Royal Hospital, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
Peter Chiodini Consultant Parasitologist and Honorary Professor, The Hospital for Tropical Diseases and The London School of Hygiene and Tropical Medicine, London, UK
Barry Cookson Director of the Laboratory of Healthcare-associated Infection, Health Protection Agency, Microbiology Services, Colindale, London, UK
Rabih Darouiche VA Distinguished Service Professor, Departments of Medicine, Surgery and Physical Medicine & Rehabilitation and Director, Center for Prostheses Infection, Baylor College of Medicine, Houston, Texas, USA
Tom Elliott Consultant Microbiologist, The Queen Elizabeth Hospital, University Hospitals NHS Foundation Trust, Birmingham, UK
James Gray Consultant Microbiologist, Department of Medical Microbiology, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
Tariq Iqbal Consultant Physician and Gastroenterologist, Department of Gastrointestinal Medicine, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Elizabeth Johnson Director of the Health Protection Agency Mycology Reference Laboratory, Bristol, UK

Shruti Khurana Specialist Registrar, Department of Respiratory Medicine, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
Peter Lambert Professor of Microbiology, School of Life and Health Sciences, Aston University, Birmingham, UK
David Livermore Director, Antibiotic Resistance Monitoring and Reference Laboratory, Health Protection Agency, Microbiology Services, Colindale, London, UK
Peter Mackie Consultant Clinical Scientist, Department of Microbiology, The General Infirmary at Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
Kaveh Manavi Consultant Physician HIV/Genitourinary Medicine, Department of Genitourinary Medicine, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Cliodna McNulty Consultant Microbiologist, Health Protection Agency, Microbiology Department, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Trust, Gloucester, UK
David Mutimer Consultant Hepatologist, Department of Liver Medicine, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
Supriya Narasimhan Assistant Professor, Division of Infectious Diseases, Department of Medicine, Drexel University, Pittsburgh, USA
Eleni Nastouli Consultant Virologist and Honorary Consultant in Paediatric Infectious Diseases, Department of Virology, University College London Hospitals NHS Trust and Great Ormond Street Hospital for Children NHS Trust, London, UK
Susan O’Connell Consultant Microbiologist, Lyme Borreliosis Unit, Health Protection Agency Microbiology Laboratory, Southampton General Hospital, Southampton University Hospitals NHS Trust, Southampton, UK
Jonathan Sandoe Consultant Microbiologist and Honorary Senior Lecturer, Department of Microbiology, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK

Sumeet Singhania Specialist Registrar, Department of Respiratory Medicine, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK

Martin Skirrow Honorary Emeritus Consultant Microbiologist, Health Protection Agency, Microbiology Department, Gloucestershire Royal Hospital, Gloucestershire Hospitals NHS Trust, Gloucester, UK

Richard Watkin Consultant Cardiologist, Good Hope Hospital, Heart of England NHS Foundation Trust, Sutton Coldfield, Birmingham, UK

Mark Woodhead Consultant in General and Respiratory Medicine and Honorary Senior Lecturer, Department of Respiratory Medicine, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Manchester, UK

Tony Worthington Senior Lecturer in Microbiology, School of Life and Health Sciences, Aston University, Birmingham, UK
Part 1

Basic microbiology
Basic bacteriology

Peter Lambert
Aston University, Birmingham, UK

Bacterial structure

Bacteria are single-celled prokaryotic microorganisms, and their DNA is not contained within a separate nucleus as in eukaryotic cells. They are approximately 0.1–10.0 μm in size (Figure 1.1) and exist in various shapes, including spheres (cocci), curves, spirals and rods (bacilli) (Figure 1.2). These characteristic shapes are used to classify and identify bacteria. The appearance of bacteria following the Gram stain is also used for identification. Bacteria which stain purple/blue are termed Gram-positive, whereas those that stain pink/red are termed Gram-negative. This difference in response to the Gram stain results from the composition of the cell envelope (wall) (Figure 1.3), which are described below.

Cell envelope

Cytoplasmic membrane

A cytoplasmic membrane surrounds the cytoplasm of all bacterial cells and are composed of protein and phospholipid; they resemble the membrane surrounding mammalian (eukaryotic) cells but lack sterols. The phospholipids form a bilayer into which proteins are embedded, some spanning the membrane. The membrane carries out many functions, including the synthesis and export of cell-wall components, respiration, secretion of extracellular enzymes and toxins, and the uptake of nutrients by active transport mechanisms.

Mesosomes are intracellular membrane structures, formed by folding of the cytoplasmic membrane. They occur more frequently in Gram-positive than in Gram-negative bacteria. Mesosomes present at the point of cell division of Gram-positive bacteria are involved in chromosomal separation; at other sites they may be associated with cellular respiration and metabolism.

Cell wall

Bacteria maintain their shape by a strong rigid outer cover, the cell wall (Figure 1.3).

Gram-positive bacteria have a relatively thick, uniform cell wall, largely composed of peptidoglycan, a complex molecule consisting of linear repeating sugar subunits cross-linked by peptide side chains (Figure 1.4a). Other cell-wall polymers, including teichoic acids, teichuronic acids and proteins, are also present.

Gram-negative bacteria have a thinner peptidoglycan layer and an additional outer membrane that differs in structure from the cytoplasmic membrane (Figure 1.4b). The outer membrane contains lipopolysaccharides on its outer face, phospholipids on its inner face, proteins and lipoproteins which anchor it to the peptidoglycan. Porins are a group of proteins that form channels through which small hydrophilic molecules, including nutrients, can cross the outer membrane. Lipopolysaccharides are
A characteristic feature of Gram-negative bacteria and are also termed ‘endotoxins’ or ‘pyrogen’. Endotoxins are released on cell lysis and have important biological activities involved in the pathogenesis of Gram-negative infections; they activate macrophages, clotting factors and complement, leading to disseminated intravascular coagulation and septic shock (Chapter 33).

Figure 1.1 Shape and size of some clinically important bacteria.
Mycobacteria have a distinctive cell wall structure and composition that differs from that of Gram-positive and Gram-negative bacteria. It contains peptidoglycan but has large amounts of high molecular weight lipids in the form of long chain length fatty acids (mycolic acids) attached to polysaccharides and proteins. This high lipid content gives the mycobacteria their acid fast properties (retaining a stain on heating in acid), which allows them to be distinguished from other bacteria (e.g. positive Ziehl-Neelsen stain).

The cell wall is important in protecting bacteria against external osmotic pressure. Bacteria with damaged cell walls, e.g. after exposure to β-lactam antibiotics such as penicillin, often rupture. However, in an osmotically balanced medium, bacteria deficient in cell walls may survive in a spherical form called protoplasts. Under certain conditions some protoplasts can multiply and are referred to as L-forms. Some bacteria, e.g. mycoplasmas, have no cell wall at any stage in their life cycle.

The cell wall is involved in bacterial division. After the nuclear material has replicated and separated, a cell wall (septum) forms at the equator of the parent cell. The septum grows in, produces a cross-wall and eventually the daughter cells may separate. In many species the cells can remain attached, forming groups, e.g. staphylococci form clusters and streptococci form long chains (Figure 1.5).

Capsules

Some bacteria have capsules external to their cell walls (Figure 1.3). These structures are bound