BROADBAND COMMUNICATIONS VIA HIGH ALTITUDE PLATFORMS

David Grace
University of York, UK

Mihael Mohorčič
Jožef Stefan Institute, Slovenia
BROADBAND COMMUNICATIONS VIA HIGH ALTITUDE PLATFORMS
BROADBAND COMMUNICATIONS VIA HIGH ALTITUDE PLATFORMS

David Grace
University of York, UK

Mihael Mohorčič
Jožef Stefan Institute, Slovenia
Contents

List of Figures xi
List of Tables xix
List of Contributors xxiii
Preface xxv

PART ONE BASICS, ENABLING TECHNOLOGIES AND ECONOMICS

1 Introduction 3
 1.1 Introduction 3
 1.2 History 6
 1.3 Wireless Communications in a HAP Environment 10
 1.3.1 Comparison of HAPs Capabilities when Compared with Terrestrial and Satellite Systems 10
 1.3.2 Regulatory Environment and Restrictions 13
 1.4 Candidate Standards for Provision of Services and Applications from HAPs 18
 1.4.1 Mobile Cellular Standards 19
 1.4.2 IEEE 802 Wireless Standards 20
 1.4.3 Multipoint Distribution Services for Multimedia Applications – MMDS and LMDS 24
 1.4.4 DVB Standards 25
 1.5 Overview of Past and Present HAP Related Projects, Trials and Development Plans 26
 1.5.1 StratXX AG – X-Station 27
 1.5.2 ERS srl 28
1.5.3 CAPANINA 28
1.5.4 USEHAAS 30
1.5.5 COST 297 31
1.5.6 The Japanese National Project 31
1.5.7 The Korean National Project 35
1.5.8 NASA Activity 37
1.5.9 AV Inc 38
1.5.10 Lockheed Martin, Boeing and Worldwide Aeros 39
1.5.11 Advanced Technologies Group (ATG) 40
1.5.12 European Space Agency (ESA) Activity 40
1.5.13 Flemish Institute for Technological Research (VITO) 41
1.5.14 QinetiQ Ltd 41
1.5.15 Space Data Corporation 42
1.5.16 HeliNet 42
1.5.17 Lindstrand Technologies Ltd (UK)/University of Stuttgart 43
1.5.18 SkyStation 43
1.5.19 Angel Technologies – HALO 43

References 43

2 Aeronautics and Energetics 49
2.1 Operating Environment and Related Challenges 49
2.1.1 The Layers of the Atmosphere 49
2.2 Types of Airborne Vehicles Used for HAPs 54
2.2.1 Aerostatic Aerial Platforms 54
2.2.2 Aerodynamic Aerial Platforms 56
2.3 Power Subsystem Alternatives 58
2.3.1 Conventional Energy Sources for HAPs 59
2.3.2 Renewable Energy Sources for HAPs 59
2.3.3 Remotely Beamed Energy for HAPs 61
2.4 Flight/Altitude Control 62
2.4.1 HAP Station Keeping 62
2.4.2 HAP Mobility Models 64
2.5 Typical Characteristics of HAP Aircraft and Airships 70
References 72

3 Operating Scenarios and Reference Architectures 75
3.1 Operating Scenarios 75
3.1.1 HAPs User Scenarios 77
3.1.2 HAPs Network Scenarios 78
3.2 Antenna Requirements and Related Challenges 80
 3.2.1 Introduction 80
 3.2.2 Types of Antennas for the Delivery of Broadband Services in the mm-Wave Bands 81
 3.2.3 Antenna Model Example 84
3.3 System and Network Architecture of HAP-Based Communication Systems 87
 3.3.1 Overview 87
 3.3.2 HAP Architectures 92
 3.3.3 Broadband Communications Links 96

References 113

4 Applications and Business Modelling 115
 4.1 Introduction 115
 4.2 Applications and Services 116
 4.2.1 Short Term 120
 4.2.2 Medium Term 120
 4.2.3 Long Term 121
 4.3 Business Model Introduction 122
 4.3.1 Operating Scenario 122
 4.3.2 Business Model Assumption 125
 4.4 Service Provider Centric Models 127
 4.4.1 Bandwidth Utilisation and Contention Ratio 127
 4.4.2 WLAN to Trains 128
 4.4.3 Backhaul for Terrestrial Base Stations/Access Points 131
 4.4.4 Broadband Internet 135
 4.4.5 Broadcast/Multicast 138
 4.4.6 Event Servicing and Disaster Relief 141
 4.4.7 Third Generation (3G) Mobile Telephone 148
 4.5 HAP Operator Centric Model 152
 4.5.1 Financial Model Assumptions 153
 4.5.2 Unmanned Solar Powered Airship 154
 4.5.3 Fuel Powered Manned Plane 156
 4.5.4 Fuel Powered Unmanned Plane 159
 4.5.5 Solar Powered Unmanned Plane 162
 4.6 Risk Assessment 164
 4.6.1 Technology Assessment 164
 4.6.2 Market Assessment 167

References 168
5 Future Development of HAPs and HAP-Based Applications 169
5.1 Trends in Aeronautical Development 169
5.2 HAP Roadmaps for Different Types of Applications 171
 5.2.1 Application Example 1: WLAN to Trains 172
 5.2.2 Application Example 2: Backhaul for Terrestrial Base Stations/Access Points 172
 5.2.3 Application Example 3: Broadband Internet 173
 5.2.4 Application Example 4: Broadcast/Multicast 173
 5.2.5 Application Example 5: 3G Mobile Communications 173
5.3 Telecommunication Missions 174
 5.3.1 The Payload for Telecommunications Applications 176
References 179

PART TWO BROADBAND WIRELESS COMMUNICATIONS FROM HIGH ALTITUDE PLATFORMS

6 HAP System Operating Environment 183
6.1 Operating Environment and Related Limitations 183
6.2 Propagation Channel Modelling 189
6.3 HAP Radio Frequency Propagation Channel Modelling 195
 6.3.1 Absorption Due to Water Vapour and Atmospheric Gases 196
 6.3.2 Scintillation 198
 6.3.3 Rain Fading 201
 6.3.4 Rain Fading and Scintillation 207
 6.3.5 Influence of Hydrometeor Effects on Cross Polarisation 209
 6.3.6 The Effects of Surrounding Environment 210
6.4 Conclusion 215
References 215

7 FSO in HAP-Based Communication Systems 219
7.1 Applicability of FSO Technology to HAP Networks 219
 7.1.1 Atmospheric Effects 222
 7.1.2 HAP FSO-Link Configurations 226
7.2 Physical Layer Aspects for FSO Links in HAP Networks 229
7.3 Free Space Optics for Optical Transport Networks 234
References 237
8 Advanced Communication Techniques as Enablers for HAP-Based Communication Systems

8.1 Modern Wireless System Design Concepts

8.1.1 Smart Antennas

8.1.2 Cognitive Radio and Dynamic Spectrum Management

8.1.3 Cross-Layer Design and Optimisation

8.2 Diversity Techniques

8.2.1 Diversity Techniques in Broadband HAP Communications

8.3 MIMO Systems

8.3.1 Spatial Multiplexing

8.3.2 Space–Time Coding

8.3.3 MIMO Systems in HAP Broadband Communications

8.4 Adaptive Coding and Modulation Schemes

8.4.1 ACM in HAP Broadband Communications

8.5 Advanced Radio Resource Management Techniques

8.5.1 Introduction

8.5.2 Scenario

8.5.3 Channel Assignment Strategy

8.5.4 Performance

8.5.5 No Connection Drop Algorithm

8.5.6 No Connection Drop Algorithm with No Downlink Threshold Detection

8.5.7 No Threshold Detection

8.5.8 Discussion

References

PART THREE MULTIPLE HIGH ALTITUDE PLATFORMS

9 Multiple HAP Networks

9.1 Why Multiple HAP Constellations?

9.1.1 Model of the Multiple HAP System

9.2 Multiple HAP Constellation Planning

9.2.1 Multiple HAPs Scenario with Directional HAP Antennas

9.3 User Antenna Pointing Error in Multiple HAP Systems

9.3.1 Methods for Characterising User Antenna Pointing Error

9.3.2 Effect of Pointing Error

References
List of Figures

Figure 1.1 Examples of the Main Types of High Altitude Platforms 4
Figure 1.2 The Original SkyStation HAP Broadband and 3G Communications Concept 7
Figure 1.3 The Angel Technologies – HALO Plane With Antenna Pod Below 8
Figure 1.4 HAP Architecture Examples 11
Figure 1.5 StratXX X-Station Airship in Development in 2007 27
Figure 1.6 CAPANINA Project Scenario 29
Figure 1.7 Pathfinder-Plus Carrying Onboard Equipment 34
Figure 1.8 The 50m Long Unmanned Airship Developed by KARI for Phase 1 36
Figure 1.9 Artist’s Impression of Lockheed Martin High Altitude Airship 39
Figure 2.1 The Layers of the Atmosphere (Altitudes are not in Linear Scale) 50
Figure 2.2 The Temperature Profile, Pressure and Density of the Air with Increasing Altitude 51
Figure 2.3 Typical Wind Profile in the Stratosphere Based on Rawinsonde Observation Data 53
Figure 2.4 Airfoil and Lifting Force 57
Figure 2.5 Aerodynamic Forces 57
Figure 2.6 Schematic of a Power Subsystem Based on Renewable Energy Sources 60
Figure 2.7 Microwave Power Beaming System Proposed by the SHARP Programme 61
Figure 2.8 Unmanned Aircraft Location Cylinder for 99% and 99.9% of Time as Specified in the HeliNet Project 63
Figure 2.9 Example of y-Axis Drift 65
Figure 2.10 Graphical Representation of x- or y-Axis Drift 65
Figure 2.11 Example of z-Axis Drift 66
Figure 2.12 Drift on the z-Axis in the Case of a Highly Directional Antenna Profile 67
Figure 2.13 Drift on the z-Axis in the Case of a Less Directional Antenna Profile 68
Figure 2.14 Example of y-Axis Rotation (Pitch) 69
Figure 2.15 Example of z-Axis Rotation (Yaw) 69
Figure 3.1 The Effect of the Antenna Roll-off on Antenna Profile, with a Sidelobe Floor of -30dB Relative to Boresight Gain 85
Figure 3.2 HAP and Cell Geometry 86
Figure 3.3 Angular Variations in the Position of a HAP on the Ground as a Function of Ground Distance, for Worst Case Horizontal and Vertical HAP Displacements 89
Figure 3.4 Caching Architecture Example 91
Figure 3.5 Stand-alone HAP with Local Services Backhauled via Terrestrial or Satellite Links 92
Figure 3.6 Stand-alone HAP with No Backhaul and a Ground Base Network Connection 93
Figure 3.7 Interconnection of HAPs Via IPLs 94
Figure 3.8 HAPs Interconnected Using Common Backhaul Ground Stations 96
Figure 3.9 HAPs Interconnected Using Backhaul Ground Stations Interconnected Using TNLs 97
Figure 3.10 Backhaul Link Configurations 103
Figure 4.1 HAP Operator and Service Provider Centric Business Model Linkages 116
Figure 4.2 Technology Divisions Between Service Provider and HAP Operator 117
Figure 4.3 HAPs Roadmap 118
Figure 4.4 Confidence, Investment, Development, Demonstration Cycle 118
Figure 4.5 Examples of the Main Types of High Altitude Platforms 119
Figure 4.6 Multiple HAP With Overlapping Coverage Area Incremental Deployment Model 123
Figure 4.7 Operational Expenditures of the WLAN on Trains Service 130
Figure 4.8 Cash Flow of the WLAN on Trains Service 131
Figure 4.9 Operational Expenditures of the Backhaul Service 134
Figure 4.10 Cash Flow of the Backhaul Service 134
Figure 4.11 Operational Expenditures of the Broadband Internet Service 137
Figure 4.12 Cash Flow of Broadband Internet 137
Figure 4.13 Operational Expenditures of the Broadcast/Multicast Service 140
Figure 4.14 Cash Flow of the Broadcast/Multicast Service 140
Figure 4.15 Operational Expenditures of the Event Servicing/Disaster Relief Model 147
Figure 4.16 Cash Flow of the Event Servicing/Disaster Relief Model 147
Figure 4.17 Operational Expenditures of 3G Mobile Phone 150
Figure 4.18 Cash Flow of 3G Mobile Phone 151
Figure 4.19 Operational Expenditures of HAP Operator Centric Model (Unmanned Airship) 155
Figure 4.20 Cash Flow of HAP Operator Centric Model (Unmanned Airship) 155
Figure 4.21 Operational Expenditures of HAP Operator Centric Model (Manned Plane) 157
Figure 4.22 Cash Flow of HAP Operator Centric Model (Manned Plane) 158
Figure 4.23 Operational Expenditures of HAP Operator Centric Model [Unmanned Plane (Fuel)] 160
Figure 4.24 Cash Flow of HAP Operator Centric Model [Unmanned Plane (Fuel)] 161
Figure 4.25 Operational Expenditures of HAP Operator Centric Model [Unmanned Plane (Solar)] 163
Figure 4.26 Cash Flow of HAP Operator Centric Model [Unmanned Plane (Solar)] 163
Figure 5.1 Multiple HAP with Overlapping Coverage Area Incremental Deployment Model 174
Figure 6.1 HAP Operating Environment 184
Figure 6.2 Comparison of Satellite, Terrestrial and HAP Propagation Environment 185
Figure 6.3 The Free Space Path Loss (FSPL) as a Function of Elevation Angle 186
Figure 6.4 Classification of the Wireless Propagation Channel Modelling 190
Figure 6.5 General Tap Delay Line Wireless Propagation Channel Model 192
Figure 6.6 Switched Wireless Propagation Channel Model 193