Business Intelligence:
Data Mining and Optimization
for Decision Making

Carlo Vercellis

Politecnico di Milano, Italy.
Business Intelligence
Business Intelligence: Data Mining and Optimization for Decision Making

Carlo Vercellis

Politecnico di Milano, Italy.
3.2 Data warehouse architecture .. 51
 3.2.1 ETL tools ... 53
 3.2.2 Metadata ... 54
3.3 Cubes and multidimensional analysis ... 55
 3.3.1 Hierarchies of concepts and OLAP operations 60
 3.3.2 Materialization of cubes of data ... 61
3.4 Notes and readings ... 62

II Mathematical models and methods .. 63

4 Mathematical models for decision making 65
 4.1 Structure of mathematical models ... 65
 4.2 Development of a model .. 67
 4.3 Classes of models ... 70
 4.4 Notes and readings ... 75

5 Data mining ... 77
 5.1 Definition of data mining .. 77
 5.1.1 Models and methods for data mining 79
 5.1.2 Data mining, classical statistics and OLAP 80
 5.1.3 Applications of data mining ... 81
 5.2 Representation of input data ... 82
 5.3 Data mining process ... 84
 5.4 Analysis methodologies .. 90
 5.5 Notes and readings ... 94

6 Data preparation ... 95
 6.1 Data validation ... 95
 6.1.1 Incomplete data .. 96
 6.1.2 Data affected by noise ... 97
 6.2 Data transformation ... 99
 6.2.1 Standardization .. 99
 6.2.2 Feature extraction ... 100
 6.3 Data reduction ... 100
 6.3.1 Sampling .. 101
 6.3.2 Feature selection ... 102
 6.3.3 Principal component analysis ... 104
 6.3.4 Data discretization ... 109

7 Data exploration .. 113
 7.1 Univariate analysis .. 113
CONTENTS

7.1.1 Graphical analysis of categorical attributes 114
7.1.2 Graphical analysis of numerical attributes 116
7.1.3 Measures of central tendency for numerical attributes . 118
7.1.4 Measures of dispersion for numerical attributes 121
7.1.5 Measures of relative location for numerical attributes . 126
7.1.6 Identification of outliers for numerical attributes ... 127
7.1.7 Measures of heterogeneity for categorical attributes .. 129
7.1.8 Analysis of the empirical density 130
7.1.9 Summary statistics .. 135

7.2 Bivariate analysis ... 136
7.2.1 Graphical analysis 136
7.2.2 Measures of correlation for numerical attributes . 142
7.2.3 Contingency tables for categorical attributes 145

7.3 Multivariate analysis 147
7.3.1 Graphical analysis 147
7.3.2 Measures of correlation for numerical attributes . 149

8 Regression ... 153
8.1 Structure of regression models 153
8.2 Simple linear regression 156
8.2.1 Calculating the regression line 158
8.3 Multiple linear regression 161
8.3.1 Calculating the regression coefficients 162
8.3.2 Assumptions on the residuals 163
8.3.3 Treatment of categorical predictive attributes 166
8.3.4 Ridge regression 167
8.3.5 Generalized linear regression 168
8.4 Validation of regression models 168
8.4.1 Normality and independence of the residuals 169
8.4.2 Significance of the coefficients 172
8.4.3 Analysis of variance 174
8.4.4 Coefficient of determination 175
8.4.5 Coefficient of linear correlation 176
8.4.6 Multicollinearity of the independent variables 177
8.4.7 Confidence and prediction limits 178
8.5 Selection of predictive variables 179
8.5.1 Example of development of a regression model 180
8.6 Notes and readings .. 185
9 Time series

9.1 Definition of time series 187
 9.1.1 Index numbers 190
9.2 Evaluating time series models 192
 9.2.1 Distortion measures 192
 9.2.2 Dispersion measures 193
 9.2.3 Tracking signal 194
9.3 Analysis of the components of time series 195
 9.3.1 Moving average 196
 9.3.2 Decomposition of a time series 198
9.4 Exponential smoothing models 203
 9.4.1 Simple exponential smoothing 203
 9.4.2 Exponential smoothing with trend adjustment 204
 9.4.3 Exponential smoothing with trend and seasonality .. 206
 9.4.4 Simple adaptive exponential smoothing 207
 9.4.5 Exponential smoothing with damped trend 208
 9.4.6 Initial values for exponential smoothing models .. 209
 9.4.7 Removal of trend and seasonality 209
9.5 Autoregressive models 210
 9.5.1 Moving average models 212
 9.5.2 Autoregressive moving average models 212
 9.5.3 Autoregressive integrated moving average models .. 212
 9.5.4 Identification of autoregressive models 213
9.6 Combination of predictive models 216
9.7 The forecasting process 217
 9.7.1 Characteristics of the forecasting process 217
 9.7.2 Selection of a forecasting method 219
9.8 Notes and readings 219

10 Classification ... 221

10.1 Classification problems 221
 10.1.1 Taxonomy of classification models 224
10.2 Evaluation of classification models 226
 10.2.1 Holdout method 228
 10.2.2 Repeated random sampling 228
 10.2.3 Cross-validation 229
 10.2.4 Confusion matrices 230
 10.2.5 ROC curve charts 233
 10.2.6 Cumulative gain and lift charts 234
10.3 Classification trees 236
 10.3.1 Splitting rules 240
10.3.2 Univariate splitting criteria 243
10.3.3 Example of development of a classification tree 246
10.3.4 Stopping criteria and pruning rules 250
10.4 Bayesian methods .. 251
 10.4.1 Naive Bayesian classifiers 252
 10.4.2 Example of naive Bayes classifier 253
 10.4.3 Bayesian networks 256
10.5 Logistic regression .. 257
10.6 Neural networks ... 259
 10.6.1 The Rosenblatt perceptron 259
 10.6.2 Multi-level feed-forward networks 260
10.7 Support vector machines 262
 10.7.1 Structural risk minimization 262
 10.7.2 Maximal margin hyperplane for linear separation ... 266
 10.7.3 Nonlinear separation 270
10.8 Notes and readings 275

11 Association rules ... 277
 11.1 Motivation and structure of association rules 277
 11.2 Single-dimension association rules 281
 11.3 Apriori algorithm .. 284
 11.3.1 Generation of frequent itemsets 284
 11.3.2 Generation of strong rules 285
 11.4 General association rules 288
 11.5 Notes and readings 290

12 Clustering .. 293
 12.1 Clustering methods 293
 12.1.1 Taxonomy of clustering methods 294
 12.1.2 Affinity measures 296
 12.2 Partition methods 302
 12.2.1 K-means algorithm 302
 12.2.2 K-medoids algorithm 305
 12.3 Hierarchical methods 307
 12.3.1 Agglomerative hierarchical methods 308
 12.3.2 divisive hierarchical methods 310
 12.4 Evaluation of clustering models 312
 12.5 Notes and readings 315
III Business intelligence applications

13 Marketing models

- **13.1** Relational marketing
 - 13.1.1 Motivations and objectives
 - 13.1.2 An environment for relational marketing analysis
 - 13.1.3 Lifetime value
 - 13.1.4 The effect of latency in predictive models
 - 13.1.5 Acquisition
 - 13.1.6 Retention
 - 13.1.7 Cross-selling and up-selling
 - 13.1.8 Market basket analysis
 - 13.1.9 Web mining

- **13.2** Salesforce management
 - 13.2.1 Decision processes in salesforce management
 - 13.2.2 Models for salesforce management
 - 13.2.3 Response functions
 - 13.2.4 Sales territory design
 - 13.2.5 Calls and product presentations planning

- **13.3** Business case studies
 - 13.3.1 Retention in telecommunications
 - 13.3.2 Acquisition in the automotive industry
 - 13.3.3 Cross-selling in the retail industry

- **13.4** Notes and readings

14 Logistic and production models

- **14.1** Supply chain optimization

- **14.2** Optimization models for logistics planning
 - 14.2.1 Tactical planning
 - 14.2.2 Extra capacity
 - 14.2.3 Multiple resources
 - 14.2.4 Backlogging
 - 14.2.5 Minimum lots and fixed costs
 - 14.2.6 Bill of materials
 - 14.2.7 Multiple plants

- **14.3** Revenue management systems
 - 14.3.1 Decision processes in revenue management

- **14.4** Business case studies
 - 14.4.1 Logistics planning in the food industry
 - 14.4.2 Logistics planning in the packaging industry

- **14.5** Notes and readings
15 Data envelopment analysis

15.1 Efficiency measures .. 386
15.2 Efficient frontier ... 386
15.3 The CCR model ... 390
 15.3.1 Definition of target objectives 392
 15.3.2 Peer groups ... 393
15.4 Identification of good operating practices 394
 15.4.1 Cross-efficiency analysis 394
 15.4.2 Virtual inputs and virtual outputs 395
 15.4.3 Weight restrictions 396
15.5 Other models .. 396
15.6 Notes and readings .. 397

Appendix A Software tools 399
Appendix B Dataset repositories 401

References .. 403

Index .. 413
Preface

Since the 1990s, the socio-economic context within which economic activities are carried out has generally been referred to as the *information and knowledge society*. The profound changes that have occurred in methods of production and in economic relations have led to a growth in the importance of the exchange of intangible goods, consisting for the most part of transfers of information. The acceleration in the pace of current transformation processes is due to two factors. The first is *globalization*, understood as the ever-increasing interdependence between the economies of the various countries, which has led to the growth of a single *global economy* characterized by a high level of integration. The second is the new *information technologies*, marked by the massive spread of the Internet and of wireless devices, which have enabled high-speed transfers of large amounts of data and the widespread use of sophisticated means of communication.

In this rapidly evolving scenario, the wealth of development opportunities is unprecedented. The easy access to information and knowledge offers several advantages to various actors in the socio-economic environment: *individuals*, who can obtain news more rapidly, access services more easily and carry out on-line commercial and banking transactions; *enterprises*, which can develop innovative products and services that can better meet the needs of the users, achieving competitive advantages from a more effective use of the knowledge gained; and, finally, the *public administration*, which can improve the services provided to citizens through the use of e-government applications, such as on-line payments of tax contributions, and e-health tools, by taking into account each patient’s medical history, thus improving the quality of healthcare services.

In this framework of radical transformation, methods of governance within complex organizations also reflect the changes occurring in the socio-economic environment, and appear increasingly more influenced by the immediate access to information for the development of effective action plans. The term *complex organizations* will be used throughout the book to collectively refer to a diversified set of entities operating in the socio-economic context, including enterprises, government agencies, banking and financial institutions, and non-profit organizations.