The major food and beverage packaging materials—glass, metal, plastic, paper and paperboard—increasingly compete with each other in the battle over which type of container is optimal for a given application. Increasingly, food and beverage product innovators need to consider which packaging materials—or combination of materials, systems, pack designs and processes—will best serve the market and enhance brand value with due consideration of the sustainability credentials of the product and its packaging.

Now in a fully revised and updated second edition, the book provides a contemporary overview of the preservation and packaging of food and beverages. It focuses initially on the core issues of biodeterioration, product quality and shelf life, before discussing logistical packaging and the importance of integrating packaging with all the activities in a supply chain.

Each of the main packaging materials is then examined in depth, alongside the techniques of active packaging and modified atmosphere packaging (MAP). This new edition also addresses environmental and sustainability concerns. A new chapter discusses bioplastics, which continue to establish niche markets in the packaging of food and beverage products.

The contributors are an authoritative team close to the latest developments in food and beverage packaging technologies. This book will provide a resource for those in and associated with the food and beverage industry who need to know about the packaging needs of the products. It will help those in the manufacture of food and beverage products to understand how their products packaging needs are met in manufacture, storage, distribution and retailing. It will be useful to those who create and manufacture packaging materials and packaging products, for packaging engineers and for students studying packaging technology, food science and all packaging-related subjects.

The Editors
Richard Coles is a Consultant in Food Packaging, based in London, UK
Mark Kirwan is a Consultant and Lecturer in Packaging Technology, based in London, UK

Also available
Packaging Research in Food Product Design and Development
H.R. Moscowitz, M. Reisner, J.B. Lawlor and R. Deliza

Technology of Bottled Water
Third Edition
Edited by N. Dege

Packaging for Nonthermal Processing of Food
Edited by J.H. Han

Cover design by Medien Creative
Cover image: © Zacharias | Dreamstime.com
Food and Beverage Packaging Technology

Second Edition

Edited by

Richard Coles
Food Packaging Specialist, London

Mark Kirwan
Consultant in Food Packaging, London
Contents

Preface iii
Contributors xv

1 Introduction 1
Richard Coles
1.1 Introduction 1
1.2 Packaging developments – an historical and future perspective 3
1.3 Role of packaging for enhanced sustainability of food supply 5
1.4 Definitions and functions of packaging 9
1.5 Packaging strategy 10
1.6 Packaging design and development 10
1.6.1 The packaging design and development framework 13
1.6.2 Packaging specifications and standards 26
1.7 Conclusion 27
References 27
Websites 28

2 Food Biodeterioration and Methods of Preservation 31
Gary S. Tucker
2.1 Introduction 31
2.2 Agents of food biodeterioration 32
2.2.1 Enzymes 32
2.2.2 Microorganisms 33
2.2.3 Non-enzymic biodeterioration 38
2.3 Food preservation methods 38
2.3.1 High temperatures 39
2.3.2 Low temperatures 47
2.3.3 Drying and water activity control 49
2.3.4 Chemical preservation 51
2.3.5 Fermentation 53
2.3.6 Modifying the atmosphere 53
2.3.7 Other techniques and developments 54
References 57

3 Packaged Product Quality and Shelf Life 59
Helen Brown, James Williams and Mark Kirwan
3.1 Introduction 59
3.2 Factors affecting product quality and shelf life 62
Contents

3.3 Chemical/biochemical processes 63
 3.3.1 Oxidation 63
 3.3.2 Enzyme activity 66
3.4 Microbiological processes 67
 3.4.1 Examples where packaging is key to maintaining microbiological shelf life 68
3.5 Physical and physico-chemical processes 70
 3.5.1 Physical damage 70
 3.5.2 Insect damage 71
 3.5.3 Moisture migration 71
 3.5.4 Barrier to odour pick-up 73
 3.5.5 Flavour scalping 73
3.6 Migration from packaging to foods 73
 3.6.1 Migration from plastic packaging 74
 3.6.2 Migration from other packaging materials 77
 3.6.3 Factors affecting migration from food contact materials 78
 3.6.4 Packaging selection to avoid migration and packaging taints 79
 3.6.5 Methods for monitoring migration 79
3.7 Conclusion 81
References 81

4 Logistical Packaging for Food Marketing Systems 85
Diana Twede and Bruce Harte

4.1 Introduction 85
4.2 Functions of logistical packaging 86
 4.2.1 Protection 86
 4.2.2 Utility/productivity 87
 4.2.3 Communication 88
4.3 Logistics’ activity-specific and integration issues 89
 4.3.1 Packaging issues in food processing 89
 4.3.2 Transport issues 90
 4.3.3 Warehousing issues 93
 4.3.4 Retail customer service issues 94
 4.3.5 Waste issues 95
 4.3.6 Supply chain integration issues 96
4.4 Distribution performance testing 97
 4.4.1 Shock and vibration testing 97
 4.4.2 Compression testing 98
4.5 Packaging materials and systems 99
 4.5.1 Corrugated fibreboard boxes 99
 4.5.2 Shrink bundles 101
 4.5.3 Reusable totes 101
 4.5.4 Unitisation 102
4.6 Conclusion 104
References 105
Further reading 105
5 Metal Packaging

Bev Page, Mike Edwards and Nick May

5.1 Overview of market for metal cans
5.2 Container performance requirements
5.3 Container designs
5.4 Raw materials for can-making
 5.4.1 Steel
 5.4.2 Aluminium
 5.4.3 How steel and aluminium are used in metal packaging
 5.4.4 Sustainability – the infinite recycling loop of metal for packaging
5.5 Can-making processes
 5.5.1 Three-piece welded cans
 5.5.2 Two-piece single drawn and multiple drawn (DRD) cans
 5.5.3 Two-piece drawn and wall ironed (DWI) cans
 5.5.4 Two-piece impact extruded cans
5.6 End-making processes
 5.6.1 Plain food can ends and shells for food/drink easy-open ends
 5.6.2 Conversion of end shells into easy-open ends
 5.6.3 Peelable membrane ends for food cans
5.7 Coatings, film laminates and inks
5.8 Processing of food and drinks in metal packages
 5.8.1 Can reception at the packer
 5.8.2 Filling and exhausting
 5.8.3 Seaming
 5.8.4 Heat processing
 5.8.5 Post-process drying
 5.8.6 Container handling
 5.8.7 Storage and distribution
5.9 Shelf life of canned foods
 5.9.1 Interactions between the can and its contents
 5.9.2 The role of tin
 5.9.3 Tin toxicity
 5.9.4 The dissolution of tin from the can surface
 5.9.5 Iron
 5.9.6 Aluminium
 5.9.7 Lacquers
5.10 Internal corrosion
5.11 Stress corrosion cracking
5.12 Environmental stress cracking corrosion of aluminium alloy beverage can ends
5.13 Sulphur staining
5.14 External corrosion
5.15 Conclusion

References
Further reading
Contents

6 Packaging of Food in Glass Containers
Peter Grayhurst and Patrick J. Girling

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>137</td>
</tr>
<tr>
<td>6.1.1 Definition of glass</td>
<td>137</td>
</tr>
<tr>
<td>6.1.2 Brief history</td>
<td>137</td>
</tr>
<tr>
<td>6.1.3 Glass packaging</td>
<td>137</td>
</tr>
<tr>
<td>6.1.4 Glass containers market sectors for foods and drinks</td>
<td>138</td>
</tr>
<tr>
<td>6.1.5 Glass containers</td>
<td>138</td>
</tr>
<tr>
<td>6.2 Attributes of food packaged in glass containers</td>
<td>139</td>
</tr>
<tr>
<td>6.2.1 Glass pack integrity and product compatibility</td>
<td>141</td>
</tr>
<tr>
<td>6.2.2 Consumer acceptability</td>
<td>141</td>
</tr>
<tr>
<td>6.3 Glass and glass container manufacture</td>
<td>141</td>
</tr>
<tr>
<td>6.3.1 Melting</td>
<td>141</td>
</tr>
<tr>
<td>6.3.2 Container forming</td>
<td>141</td>
</tr>
<tr>
<td>6.3.3 Design parameters</td>
<td>142</td>
</tr>
<tr>
<td>6.3.4 Surface treatments</td>
<td>142</td>
</tr>
<tr>
<td>6.4 Closure selection</td>
<td>147</td>
</tr>
<tr>
<td>6.4.1 Normal Seals</td>
<td>148</td>
</tr>
<tr>
<td>6.4.2 Vacuum seals</td>
<td>148</td>
</tr>
<tr>
<td>6.4.3 Pressure seals</td>
<td>148</td>
</tr>
<tr>
<td>6.5 Thermal processing of glass packaged foods</td>
<td>148</td>
</tr>
<tr>
<td>6.6 Plastic sleeving and decorating possibilities</td>
<td>149</td>
</tr>
<tr>
<td>6.7 Strength in theory and practice</td>
<td>149</td>
</tr>
<tr>
<td>6.8 Glass pack design and specification</td>
<td>150</td>
</tr>
<tr>
<td>6.8.1 Concept and container design</td>
<td>150</td>
</tr>
<tr>
<td>6.9 Packing – due diligence in the use of glass containers</td>
<td>152</td>
</tr>
<tr>
<td>6.10 Environmental profile</td>
<td>153</td>
</tr>
<tr>
<td>6.10.1 Reuse</td>
<td>153</td>
</tr>
<tr>
<td>6.10.2 Recycling</td>
<td>154</td>
</tr>
<tr>
<td>6.10.3 Reduction – light weighting</td>
<td>154</td>
</tr>
<tr>
<td>6.11 Glass as a marketing tool</td>
<td>155</td>
</tr>
<tr>
<td>References</td>
<td>155</td>
</tr>
<tr>
<td>Further reading</td>
<td>156</td>
</tr>
</tbody>
</table>

7 Plastics in Food Packaging
Mark J. Kirwan, Sarah Plant and John W. Strawbridge

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>157</td>
</tr>
<tr>
<td>7.1.1 Definition and background</td>
<td>157</td>
</tr>
<tr>
<td>7.1.2 Use of plastics in food packaging</td>
<td>158</td>
</tr>
<tr>
<td>7.1.3 Types of plastics used in food packaging</td>
<td>159</td>
</tr>
<tr>
<td>7.2 Manufacture of plastics packaging</td>
<td>161</td>
</tr>
<tr>
<td>7.2.1 Introduction to the manufacture of plastics packaging</td>
<td>161</td>
</tr>
<tr>
<td>7.2.2 Plastic film and sheet for packaging</td>
<td>161</td>
</tr>
<tr>
<td>7.2.3 Pack types based on use of plastic films, laminates, etc.</td>
<td>165</td>
</tr>
<tr>
<td>7.2.4 Rigid plastic packaging</td>
<td>167</td>
</tr>
</tbody>
</table>
7.3 Types of plastic used in packaging

7.3.1 Polyethylene (PE) 170

7.3.2 Polypropylene (PP) 171

7.3.3 Polyethylene Terephthalate (PET or PETE) 173

7.3.4 Polyethylene naphthalene dicarboxylate (PEN) 174

7.3.5 Polycarbonate (PC) 175

7.3.6 Ionomers 175

7.3.7 Ethylene vinyl acetate (EVA) 176

7.3.8 Polyamide (PA) 176

7.3.9 Polyvinyl chloride (PVC) 177

7.3.10 Polyvinylidene chloride (PVdC) 178

7.3.11 Polystyrene (PS) 178

7.3.12 Styrene butadiene (SB) 179

7.3.13 Acrylonitrile butadiene styrene (ABS) 179

7.3.14 Ethylene vinyl alcohol (EVOH) 179

7.3.15 Polymethyl pentene (TPX) 180

7.3.16 High nitrile polymers (HNP) 180

7.3.17 Fluoropolymers 180

7.3.18 Cellulose-based materials 181

7.3.19 Polyvinyl acetate (PVA) 182

7.4 Coating of plastic films – types and properties 182

7.4.1 Introduction to coating 182

7.4.2 Acrylic coatings 182

7.4.3 PVdC coatings 183

7.4.4 PVdC coatings 183

7.4.5 Low-temperature sealing coatings (LTSCs) 183

7.4.6 Metallising with aluminium 183

7.4.7 SiOx coatings 184

7.4.8 DLC (Diamond-like coating) 184

7.4.9 Extrusion coating with PE 184

7.5 Secondary conversion techniques 185

7.5.1 Film lamination by adhesive 185

7.5.2 Extrusion lamination 186

7.5.3 Thermal lamination 186

7.6 Printing 187

7.6.1 Introduction to the printing of plastic films 187

7.6.2 Gravure printing 187

7.6.3 Flexographic printing 188

7.6.4 Digital printing 188

7.7 Printing and labelling of rigid plastic containers 188

7.7.1 In-mould labelling 188

7.7.2 Labelling 188

7.7.3 Dry offset printing 189

7.7.4 Silk screen printing 189

7.7.5 Heat transfer printing 189

7.8 Food contact and barrier properties 189

7.8.1 The issues 189
7.8.2 Migration 190
7.8.3 Permeation 190
7.8.4 Changes in flavour 191

7.9 Sealability and closure 192
7.9.1 Introduction to sealability and closure 192
7.9.2 Heat sealing 192
7.9.3 Flat jaw sealing 192
7.9.4 Crimp jaw conditions 193
7.9.5 Impulse sealing 194
7.9.6 Hot wheel sealing 195
7.9.7 Hot air sealers 195
7.9.8 Gas flame sealers 195
7.9.9 Induction sealing 195
7.9.10 Ultrasonic sealing 195
7.9.11 Cold seal 195
7.9.12 Plastic closures for bottles, jars and tubs 196
7.9.13 Adhesive systems used with plastics 196

7.10 How to choose 196

7.11 Retort pouch 198
7.11.1 Packaging innovation 198
7.11.2 Applications 199
7.11.3 Advantages and disadvantages 200
7.11.4 Production of pouches 201
7.11.5 Filling and sealing 201
7.11.6 Processing 202
7.11.7 Process determination 203
7.11.8 Post retort handling 203
7.11.9 Outer packaging 204
7.11.10 Quality assurance 204
7.11.11 Shelf life 204

7.12 Environmental and waste management issues 205
7.12.1 Environmental benefit 205
7.12.2 Sustainable development 205
7.12.3 Resource minimisation – light weighting 205
7.12.4 Plastics manufacturing and life cycle assessment (LCA) 206
7.12.5 Plastics waste management 206

References 209
Further reading 210
Websites 210
Appendices 211

8 Paper and Paperboard Packaging 213
M.J. Kirwan

8.1 Introduction 213
8.2 Paper and paperboard – fibre sources and fibre separation (pulping) 215
8.3 Paper and paperboard manufacture 217
8.3.1 Stock preparation 217
8.3.2 Sheet forming 217
8.3.3 Pressing 218
8.3.4 Drying 218
8.3.5 Coating 219
8.3.6 Reel-up 219
8.3.7 Finishing 219
8.4 Packaging papers and paperboards 219
8.4.1 Wet strength paper 220
8.4.2 Microcreping 220
8.4.3 Greaseproof 220
8.4.4 Glassine 220
8.4.5 Vegetable parchment 220
8.4.6 Tissues 220
8.4.7 Paper labels 221
8.4.8 Bag papers 221
8.4.9 Sack kraft 221
8.4.10 Impregnated papers 221
8.4.11 Laminating papers 221
8.4.12 Solid bleached board (SBB) 221
8.4.13 Solid unbleached board (SUB) 222
8.4.14 Folding boxboard (FBB) 222
8.4.15 White lined chipboard (WLC) 223
8.5 Properties of paper and paperboard 223
8.5.1 Appearance 224
8.5.2 Performance 224
8.6 Additional functional properties of paper and paperboard 225
8.6.1 Treatment during manufacture 225
8.6.2 Lamination 225
8.6.3 Plastic extrusion coating and laminating 226
8.6.4 Printing and varnishing 227
8.6.5 Post-printing roller varnishing/coating/laminating 227
8.7 Design for paper and paperboard packaging 228
8.8 Package types 228
8.8.1 Tea and coffee bags 228
8.8.2 Paper bags and wrapping paper 228
8.8.3 Sachets/pouches/overwraps 229
8.8.4 Multiwall paper sacks 229
8.8.5 Folding cartons 231
8.8.6 Liquid packaging cartons 233
8.8.7 Rigid cartons or boxes 235
8.8.8 Paper-based tubes, tubs and composite containers 235
8.8.9 Fibre drums 236
8.8.10 Corrugated fibreboard packaging 237
8.8.11 Moulded pulp containers 239
8.8.12 Labels 240
8.8.13 Sealing tapes 241
8.8.14 Cushioning materials 242
8.8.15 Cap liners (wads) and diaphragms 242
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9 Systems</td>
<td>243</td>
</tr>
<tr>
<td>8.10 Environmental profile</td>
<td>243</td>
</tr>
<tr>
<td>8.11 Carbon footprint</td>
<td>247</td>
</tr>
<tr>
<td>8.11.1 Carbon sequestration in forests</td>
<td>247</td>
</tr>
<tr>
<td>8.11.2 Carbon stored in forest products</td>
<td>248</td>
</tr>
<tr>
<td>8.11.3 Greenhouse gas emissions from forest product manufacturing facilities</td>
<td>248</td>
</tr>
<tr>
<td>8.11.4 Greenhouse gas emissions associated with producing fibre</td>
<td>248</td>
</tr>
<tr>
<td>8.11.5 Greenhouse gas emissions associated with producing other raw materials/fuels</td>
<td>248</td>
</tr>
<tr>
<td>8.11.6 Greenhouse gas emissions associated with purchased electricity, steam and heat, and hot and cold water</td>
<td>248</td>
</tr>
<tr>
<td>8.11.7 Transport-related greenhouse gas emissions</td>
<td>249</td>
</tr>
<tr>
<td>8.11.8 Emissions associated with product use</td>
<td>249</td>
</tr>
<tr>
<td>8.11.9 Emissions associated with product end-of-life</td>
<td>249</td>
</tr>
<tr>
<td>8.11.10 Avoided emissions and offsets</td>
<td>249</td>
</tr>
<tr>
<td>References</td>
<td>249</td>
</tr>
<tr>
<td>Further reading</td>
<td>249</td>
</tr>
<tr>
<td>Websites</td>
<td>250</td>
</tr>
</tbody>
</table>

9 Active Packaging

B.P.F. Day and L. Potter

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>251</td>
</tr>
<tr>
<td>9.2 Oxygen scavengers</td>
<td>252</td>
</tr>
<tr>
<td>9.3 Carbon dioxide scavenger and emitters</td>
<td>254</td>
</tr>
<tr>
<td>9.4 Ethylene scavengers</td>
<td>255</td>
</tr>
<tr>
<td>9.5 Ethanol emitters</td>
<td>256</td>
</tr>
<tr>
<td>9.6 Moisture absorbers</td>
<td>257</td>
</tr>
<tr>
<td>9.7 Flavour/odour absorbers</td>
<td>258</td>
</tr>
<tr>
<td>9.8 Lactose and cholesterol removers</td>
<td>259</td>
</tr>
<tr>
<td>9.9 Anti-oxidant release</td>
<td>259</td>
</tr>
<tr>
<td>9.10 Temperature-controlled packaging</td>
<td>259</td>
</tr>
<tr>
<td>9.11 Regulatory issues, consumer acceptability and equipment considerations</td>
<td>260</td>
</tr>
<tr>
<td>9.12 Conclusion</td>
<td>261</td>
</tr>
<tr>
<td>References</td>
<td>261</td>
</tr>
</tbody>
</table>

10 Modified Atmosphere Packaging

Michael Mullan and Derek McDowell

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.A1 Introduction</td>
<td>263</td>
</tr>
<tr>
<td>10.A1.1 Historical development</td>
<td>264</td>
</tr>
<tr>
<td>10.A2 Gaseous environment</td>
<td>264</td>
</tr>
<tr>
<td>10.A2.1 Gases used in MAP</td>
<td>264</td>
</tr>
<tr>
<td>10.A2.2 Effect of the gaseous environment on the activity of bacteria, yeasts and moulds</td>
<td>265</td>
</tr>
</tbody>
</table>
Contents

10.A2.3 Effect of the gaseous environment on the chemical, biochemical and physical properties of foods 267
10.A2.4 Physical spoilage 270
10.A3 Packaging materials 270
10.A3.1 Main plastics used in MAP 270
10.A3.2 Selection of plastic packaging materials 273
10.A4 Modified packaging atmosphere machines 276
10.A4.1 Chamber machines 277
10.A4.2 Snorkel machines 277
10.A4.3 Form-fill-seal machines 277
10.A4.4 Preformed trays 279
10.A4.5 Modification of the pack atmosphere 281
10.A4.6 Sealing 281
10.A4.7 Cutting 282
10.A4.8 Additional operations 283
10.A5 Quality assurance of map 283
10.A5.1 Heat seal integrity 285
10.A5.2 Measurement of transmission rate and permeability in packaging films 286
10.A5.3 Determination of headspace gas composition 288

Section B: Main food types 288
10.B1 Raw red meat 288
10.B2 Raw poultry 288
10.B3 Cooked, cured and processed meat products 289
10.B4 Fish and fish products 290
10.B5 Fruits and vegetables 291
10.B6 Dairy products 293
References 293

11 Bioplastics 295
Jim Song, Martin Kay and Richard Coles

11.1 Introduction 295
11.2 Definitions 297
11.2.1 Plastics based on renewable resources 297
11.2.2 Biodegradable and compostable plastics according to EN13432 or similar standards 297
11.3 Bioplastics and carbon 298
11.4 Bioplastics – overview of material types 299
11.4.1 Classification of bioplastics 299
11.4.2 Bioplastics directly extracted from biomass 300
11.4.3 Bioplastics synthesised from bio-derived monomers 305
11.4.4 Biodegradable polymers from petrochemicals 306
11.4.5 Polyesters directly produced from natural organisms 308
Contents

11.4.6 Biocomposites 308
11.5 Waste management options for bioplastics 310
 11.5.1 Conventional waste management options 310
 11.5.2 Biological waste treatments of bioplastics 311
 11.5.3 Summary 315
11.6 Bioplastics – challenges for a growing market 316
11.7 Conclusion 317
 References 317
 Websites 319

Index 321

A colour plate section falls between pages 32 and 33
Preface

This book informs the reader about product preservation processes and techniques, product quality and shelf life, and the logistical packaging, packaging materials, machinery and processes, necessary for a wide range of packaging presentations and methods of distribution used for the production and marketing of food and beverage products. The role of packaging in enhancing the sustainability of the food and beverage supply system is also emphasised.

It is essential that those involved in packaging innovation and design have a sound understanding of the fundamental requirements for consumer safety, product protection, preservation, together with a broad appreciation of the multi-dimensional role of packaging. Business objectives may include:

- the launch of new products or the re-launch of existing products
- the provision of added value to existing products or services
- cost reduction in the supply chain
- improved sustainability credentials of a product and its packaging

This book sets out to assist in the attainment of these objectives by informing designers, technologists and others in the packaging chain about key food and beverage packaging technologies and processes. To achieve this, the following five principal subject areas are covered:

(i) Packaging innovation and design (Chapter 1).
(ii) Bio-deterioration and methods of preservation (Chapter 2).
(iii) Packaged product quality and shelf life (Chapter 3).
(iv) Logistical packaging for food marketing systems (Chapter 4).
(v) Packaging materials and processes (Chapters 5–10).

Chapter 1 introduces the subject of food and beverage packaging and its design and development. Strategically, packaging innovation can be an important source of competitive advantage for retailers and product manufacturers seeking to promote and differentiate their brands. Chapter 2 discusses bio-deterioration and methods of product preservation that are fundamental to conserving the integrity of a product and protecting the health of the consumer. Chapter 3 discusses packaged product quality and shelf life issues that are the main concerns for product stability and consumer acceptability. Chapter 4 discusses logistical packaging for food marketing systems – it considers supply chain efficiency, distribution hazards, opportunities for cost reduction and added value, communication, pack protection and performance evaluation. Chapters 5, 6, 7 and 8 consider metal cans, glass, plastics and paper and paperboard, respectively. Chapters 9 and 10 discuss active packaging and modified atmosphere packaging respectively – these techniques are used to extend/optimise the shelf life and/or guarantee quality attributes such as nutritional content, taste and the colour of many types of fresh, processed and prepared food and beverage.