Glow Discharge Plasmas in Analytical Spectroscopy
Dedicated to our family, friends and colleagues
for their support through the years . . .

RKM
JACB
Contents

Preface .. xi

List of Contributors .. xiii

1 Introduction ... 1
 R. K. Marcus and J. A. C. Broekaert
 1.1 Rationale .. 1
 1.2 Glow Discharge Devices: Basic Operating Principles 3
 1.3 Glow Discharge Devices: Scope of Application 6
 1.4 Volume Outline ... 7
 1.5 References ... 12

2 Optical Emission Spectrometry with Glow Discharges 15
 J. A. C. Broekaert
 2.1 Introduction ... 15
 2.2 Glow Discharges ... 16
 2.3 Atomic Emission Spectrometry 36
 2.4 Material Ablation 49
 2.5 Analyses with Glow Discharge Atomic Emission Spectrometry . 55
 2.6 Other Methods of Analysis and Outlook 63
 2.7 References ... 67

3 Mass Spectrometry of Glow Discharges 71
 W. W. Harrison, C. Yang and E. Oxley
 3.1 Introduction ... 71
 3.2 Fundamentals of Mass Spectrometry 75
 3.3 Instrumentation ... 82
 3.4 Qualitative Considerations 91
 3.5 Quantitative Analysis 92
 3.6 Conclusions ... 95
 3.7 References ... 95
4 Radio Frequency Glow Discharges 97
 R. K. Marcus
 4.1 Introduction .. 97
 4.2 Radio Frequency Glow Discharge (rf-GD) Operation Principles 99
 4.3 Comparisons with dc-Powered Glow Discharge Sources 101
 4.4 Instrumentation ... 106
 4.5 Analytical Applications 112
 4.6 Summary .. 136
 4.7 References ... 136

5 Depth Profile Analysis .. 141
 A. Bengtson
 5.1 Introduction ... 141
 5.2 Instrumentation .. 142
 5.3 Practical Aspects and Results 144
 5.4 Conclusions .. 153
 5.5 References ... 154

6 Numerical Modeling of Analytical Glow Discharges 155
 A. Bogaerts and R. Gijbels
 6.1 Introduction ... 155
 6.2 Description of the Models 157
 6.3 Results and Discussion 170
 6.4 Conclusion ... 202
 6.5 References ... 203

7 Application of Glow Discharge Optical Emission Spectrometry in the Steel Industry 207
 K. Kakita
 7.1 Introduction ... 207
 7.2 Measurement Traceability of Coating Weight and Chemical Composition by GD-OES 208
 7.3 Method of Coating Analysis by GD-OES 209
 7.4 Depth Profiles of Coatings by GD-OES 213
 7.5 Factors Affecting Depth Profiles 217
 7.6 Validation and Verification of Calibration Graphs 225
 7.7 References ... 229

8 Surfaces, Thin Films and Coatings 231
 R. Payling, P. Chapon, K. Shimizu, R. Passetemps, A. Jadin,
 Y. Bourgeois, K. Crener, M. Aeberhard and J. Michler
 8.1 Introduction ... 231
 8.2 Surfaces .. 232
 8.3 Thin Films .. 238
Contents

8.4 Coatings .. 243
8.5 Conclusions .. 251
8.6 Acknowledgements .. 251
8.7 References .. 251

9 Comparison of Glow Discharge Atomic Spectrometry with Other Surface Analysis Methods .. 253
K. Wagatsuma
9.1 Introduction ... 253
9.2 Surface Analysis Methods Competitive with Glow Discharge Spectrometry .. 256
9.3 Analytical Examples ... 263
9.4 References .. 272

10 Analysis of Samples of Nuclear Concern with Glow Discharge Atomic Spectrometry .. 273
M. Betti
10.1 Introduction ... 273
10.2 Instrumentation .. 274
10.3 Practical Aspects and Results 277
10.4 Conclusions .. 288
10.5 Acknowledgements .. 289
10.6 References .. 290

11 Analysis of Nonconducting Materials by dc Glow Discharge Spectrometry .. 293
A. Bogaerts, W. Schelles and R. Van Grieken
11.1 Introduction ... 293
11.2 Use of a Conducting Host Matrix 294
11.3 Use of a Conducting Secondary Cathode 301
11.4 Conclusion ... 311
11.5 References .. 314

12 Standards and Reference Materials for Glow Discharge Spectroscopies .. 317
M. R. Winchester
12.1 Introduction ... 317
12.2 Practical Aspects .. 318
12.3 Conclusions ... 331
12.4 References .. 332

13 Analysis of Liquid Samples Using Glow Discharge Spectroscopies .. 335
R. K. Marcus
13.1 Introduction ... 335
13.2 Instrumentation .. 336
13.3 Practical Aspects and Applications 341
13.4 References .. 360

14 GC Speciation with GDMS Detection 363
 J. A. Caruso and L. Milstein
 14.1 Introduction .. 363
 14.2 Elemental Speciation 364
 14.3 Instrumentation 364
 14.4 Practical Aspects and Results 370
 14.5 Conclusions .. 378
 14.6 References ... 379

15 Glow Discharge Atomic Emission Spectrometry for the Analysis of Gases and as an Alternative Gas Chromatographic Detector 381
 R. Pereiro, N. G. Orellana-Velado and A. Sanz-Medel
 15.1 Introduction .. 381
 15.2 Instrumentation for the Analysis of Gases and Gas Chromatographic Detection by GD-AES 386
 15.3 Practical Aspects and Results 392
 15.4 Conclusions ... 399
 15.5 References .. 399

16 Low-pressure Inductively Coupled Plasmas 401
 H. Evans
 16.1 Introduction .. 401
 16.2 Fundamentals 403
 16.3 Instrumentation 407
 16.4 Practical Aspects and Results 416
 16.5 Conclusions ... 430
 16.6 References .. 430

17 Multidimensional Ionization Sources for Plasma-source Mass Spectrometry .. 435
 J. P. Guzowski, Jr and G. M. Hieftje
 17.1 Introduction .. 435
 17.2 Tandem Sources in PSMS 437
 17.3 Multipurpose Ionization Sources for PSMS 441
 17.4 Conclusions ... 463
 17.5 Acknowledgments 463
 17.6 References .. 464

Index .. 469
Almost by definition, analytical spectroscopy is a science of problem solving. In this ever-changing world (both politically and technologically), the problems presented to the analytical chemist seem to be changing at an even greater pace. New problems generally require the development of new strategies and tools to solve. Of the modern approaches to spectrochemical analysis, the use of glow discharge (GD) devices seems to be showing some of the greatest breadth in terms of the ways that the devices are being used to solve problems. The opening lines of the Preface of a book edited by one of the present editors (R.K.M.) almost a decade ago stated that ‘One of the greatest challenges remaining in the area of analytical atomic spectrometry is the development of more universal methods for the direct analysis of solid materials’. This statement remains true to this day, but the breadth of the diversity of potential applications has evolved far beyond the realm of solids elemental analysis to molecular analysis of solids, elemental analysis of gases and liquids and indeed molecular species analysis of gases and liquids.

The potential use of glow discharge sources in such diverse areas of application is really a product of the basic physics by which the devices operate. By their nature, GD sources provide means of converting solid specimens into gas-phase atoms and molecules in a controlled fashion. This quality is, of course, the basis of the still-growing use of glow discharge sources in bulk solids and depth-resolved elemental analysis. Gas-phase atoms and molecules are subsequently exposed to a plasma environment that is mild in comparison with spectrochemical sources operating at atmospheric pressure [e.g. flames, inductively coupled plasmas (ICPs) and microwave-induced plasmas (MIPs)]. Mild in this case refers to the fact that the kinetic temperatures are just above room temperature as opposed to thousands of degrees celsius. As such, gaseous molecules are not de facto broken down to their atomic constituents. In addition, the inert gas environment minimizes greatly the possibility of complicating side-reactions. Collisions taking place in the plasma are very effective, though, in exciting and ionizing gaseous atoms and molecules. In this way, atomic (optical) emission and atomic and molecular mass spectrometries can be employed to detect sputtered analytes.
Recent developments have now brought new sample introduction schemes to bear. Methods for analyzing liquid microsamples and flowing streams as well as a wide variety of gas-phase environments have been developed. While the types of GD instruments that are commercially available have been fairly static over the last decade, developments in these new application areas are surely going to yield very exciting new tools of high practical utility for problem solving in materials, environmental and biological chemistry.

Glow Discharge Plasmas in Analytical Spectroscopy is a multi-authored volume that hopes to capture the present state of the art of analytical applications while also highlighting the exciting new developments that will permit problem solving over an ever-expanding range of application. The chapters in the volume have been arranged first to present the basic technology and science underlying the most widely employed implementations of GD sources, then to highlight specific application areas of technological (and economic) significance. The final few chapters serve as a window to new applications of glow discharge devices in areas that are both nontraditional and also of high potential impact. As such, it is intended that the volume will be of use both to current practitioners and to those in the future. The authors of the chapters are clearly recognized world leaders in their respective fields, and in fact the entirety of analytical spectroscopy. They are leaders in both hardware development as well as application areas. Each author has been intentional in discussing their respective topic in relation to alternative methodologies, and as such the reader should gain a better understanding of the context of the work. It is intended that the content should be suitable for the technician, staff scientist and laboratory manager alike.

The Editors would like to express their appreciation to each of the authors for their thoughtful and valuable contributions. The writing of a chapter in such a volume is not a glamorous or invigorating undertaking, it is truly a service to the community as a whole. For this we are very grateful. We would also like to acknowledge the editorial staff of John Wiley & Sons who have shepherded this project from conception through to production. They have provided both a pleasurable and professional environment in which to work.

R. Kenneth Marcus
Clemson, SC, USA

J. A. C. Broekaert
Hamburg, Germany
List of Contributors

MAX AEGERHARD
Swiss Federal Laboratories for Materials Testing and Research (EMPA),
Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland

ARNE BENGTSON
Swedish Institute for Metals Research,
Drottning Kristinas vag 48, S-111428 Stockholm, Sweden

MARIA BETTI
European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany

ANNEMIE BOGAERTS
University of Antwerp (UIA), Department of Chemistry, Universiteitsplein 1, B-2610 Wilrijk, Belgium

YANN BOURGEIOS
Certech, Zone Industrielle C, B-7180 Seneffe, Belgium

JOSÉ A.C. BROEKAERT
University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

JOSEPH A. CARUSO
University of Cincinnati, Department of Chemistry, P.O. Box 210037, Cincinnati, OH 45221-0037, USA

PATRICK CHAPON
Jobin-Yvon Horiba, 16–18 rue du Canal, F-91165 Longjumeau Cedex, France

KARL CRENER
Certech, Zone Industrielle C, B-7180 Seneffe, Belgium