Fractures of the facial skeleton
Fractures of the facial skeleton

Michael Perry
Consultant Maxillofacial Surgeon, London North West Healthcare Regional Maxillofacial Unit and Regional Trauma Centre (Northwick Park Hospital, Harrow and St Mary's Hospital, London, UK)

Andrew Brown
Honorary Consultant Maxillofacial Surgeon, Regional Maxillofacial Unit, Queen Victoria Hospital, East Grinstead, UK

Peter Banks
Honorary Consultant Maxillofacial Surgeon, Regional Maxillofacial Unit, Queen Victoria Hospital, East Grinstead, UK

SECOND EDITION

WILEY Blackwell
Preface, vii
Acknowledgements, ix
 1 Facial trauma: incidence, aetiology and principles of treatment, 1
 2 Emergency management of facial trauma, 9
 3 Clinical features of facial fractures, 23
 4 Imaging, 51
 5 Treatment of dentoalveolar injuries, 60
 6 Treatment of fractures of the mandible, 69
 7 Treatment of fractures of the midface and upper face, 97
 8 Soft tissue injuries and fractures associated with tissue loss, 127
 9 Postoperative care, 139
 10 Complications, 148
Index, 161
Preface

It is now more than a decade since the first edition of this book was published and its popularity has justified several reprints. The original concept was to have a small book that was not simply an exam orientated text for postgraduate students in maxillofacial surgery. That concept bears repetition: to summarize what is accepted and well known while providing detailed debate in areas where controversy remains. The then authors hoped it would appeal to all surgical specialties involved in facial trauma to further accurate diagnosis and an understanding of the principles of management. This new edition has expanded the section on general trauma management and the place of maxillofacial injuries within that spectrum. To that end there is now a third author with wide experience in this field.

The development and improvement in maxillofacial trauma management in recent years is hugely related to advances in imaging. Surgical techniques, however, have not undergone equivalent dramatic change and in some cases promising ideas and materials have not proved as useful as expected. On the credit side, however, the overall functional and cosmetic outcome for injuries that involve the dentition has advanced as a result of implant technology.

This edition still contains brief descriptions of a few techniques that may only be regularly employed in those parts of the world where easy access to plating equipment continues to be limited. Nevertheless, there are some methods previously in common use which are now clearly obsolete; any mention of them in this revised text is solely to show their limitations or where an historical comparison appeared useful.

Although this book is first and foremost about the management of fractures of the facial skeleton and the dentition, the subject is impossible to divorce from associated soft tissue injury and these sections have been expanded without attempting to be comprehensive.
Acknowledgements

A number of figures are taken from *Atlas of Operative Maxillofacial Trauma Surgery*. Michael Perry and Simon Holmes (Eds): Springer; 2014, and reproduced with kind permission.

Figures 7.10 a–e have been kindly provided by Kenneth Sneddon, Consultant Maxillofacial Surgeon, Queen Victoria Hospital, East Grinstead and illustrate a case operated on by him.

Figure 7.18 has been kindly provided by Jeremy Collyey, Consultant Maxillofacial Surgeon, Queen Victoria Hospital, East Grinstead and are pre-operative images of a patient under his care.

Figures 8.4, 8.5, 8.6 and 8.8 have been kindly provided by Malcolm Cameron, Consultant Maxillofacial Surgeon, Addenbrooke’s Hospital, Cambridge.
CHAPTER 1

Facial trauma: incidence, aetiology and principles of treatment

Facial trauma is a challenging area of clinical practice. By its very nature, the highly visible effects it can have on both the function and aesthetics of the face means that any repair that is less than perfect will be all too apparent. Injuries to the nasoethmoid region are especially noticeable – the medial canthus needs only to drift a millimetre or so to become obvious. However, fractures are just one component of the spectrum of ‘maxillofacial injuries’. They are variably associated with injuries to the overlying soft tissues and neighbouring structures such as the eyes, lacrimal apparatus, nasal airways, paranasal sinuses, tongue and various sensory and motor nerves.

The bones and tissues of the face support and maintain a number of key functions, including those relating to the oral cavity, nasal cavity and orbits. Not surprisingly, injuries to the face can have a major cosmetic impact and even so-called ‘minor’ injuries if poorly treated can result in significant disability and an unsightly appearance. When fractures extend into the skull base and involve the intracranial contents they are usually referred to as ‘craniofacial’ injuries. These will often require combined management with a neurosurgeon. Facial trauma can vary in severity therefore from a simple crack in a bone to major disruption of the entire facial skeleton with associated severe soft tissue injury.

Most facial injuries occur following relatively low energy impacts and require relatively straightforward treatment. However, despite high patient satisfaction rates, less than perfect results are still common. Clinicians treating these injuries should strive for the ideal goal of returning the patient to their pre-injury form and function. Unfortunately in many cases, especially when high energy injuries have resulted in both comminution of the facial skeleton and significant soft tissue damage, this cannot always be achieved. Despite major developments in the fields of tissue healing, biomaterials and surgical technology, there is still room for improvement.

Although fractures of the facial skeleton are common, they can easily be overlooked when accompanied by soft tissue swelling or lacerations. Delay in diagnosis can contribute to the likelihood of residual deformity and all doctors working in emergency departments should therefore be able to recognize these injuries, understand their significance and be familiar with basic management. Fractures of the lower jaw or alveolus may also present to a dental surgeon in general practice, or very rarely be a complication of a difficult tooth extraction. An understanding of facial fractures, as well as other facial injuries, has a practical application for many specialists therefore, and is not just of relevance to those studying for higher qualifications or those pursuing a career in specialist surgery.

When considering the topic of facial fractures parallels can be drawn with orthopaedic surgery. In a sense, management of facial trauma can be regarded as ‘facial orthopaedics’ and as such requires the same core knowledge of fracture management and application of similar treatment principles. These include an understanding of fracture healing, principles of fixation and an appreciation of the importance of the ‘soft tissue envelope’. However, facial surgeons will also need to draw on their specialist aesthetic skills to ensure the best possible results, facilitating this by being as anatomically precise as possible.

Incidence

When considering trauma in all its forms maxillofacial injuries are not particularly common, although it is difficult to arrive at any accurate estimate of their global
Chapter 1

incidence. Estimates vary considerably both within and between countries. Reported incidences may also be skewed, depending on local referral pathways. Nasal fractures, for instance, are commonly treated by plastic surgeons and otorhinolaryngologists as well as oral and maxillofacial surgeons. As a result they may not be fully captured by any single database. There will also be a variation in the number of fractures treated by any particular specialist unit depending on geographical location, the demographics of the catchment population and seasonal factors. Generally speaking, the most common facial fractures are nasal and mandibular fractures, followed by injuries to the zygoma, maxilla and orbit. Dentoalveolar fractures are also common but may not present to specialist centres, so accurate figures are not widely available. Finally, the terminology used for recording injuries may add to the confusion about fracture incidence. For example, the term ‘middle third fracture’ is not anatomically precise and may be used to include fractures of the midface, orbito-zygomatic complex and fractures of the nose.

In one large study of patients sustaining injuries as a result of personal assault approximately 80% of all fractures and 66% of all lacerations were facial. Other prospective studies of severely injured patients have shown that a significant number of maxillofacial injuries may also be associated with life-threatening injuries elsewhere. Of these patients, approximately one fifth subsequently died while in hospital. This frequency of coexisting injuries may have major implications when considering transfer to specialist centres.

Aetiology

In many countries the common causes of fractures of the facial bones are interpersonal violence, sporting injuries, falls, motor vehicle collisions (road traffic accidents) and industrial or agricultural trauma. For the first 30 years after the World War II, motor vehicle collisions (MVC) were the major cause of maxillofacial injuries, accounting for between 35 and 60% of fractures of the facial bones. Following the introduction of alcohol, seat belt and crash helmet legislation, these patterns dramatically changed. Many longitudinal studies from countries such as the Netherlands, Germany and the UK have reported that economically prosperous countries have shown a striking reduction in motor vehicle collisions as a specific cause of facial injuries, while at the same time there has been an increase in interpersonal violence and sports related injuries.

The incidences and causes of facial bone fractures are mostly influenced by:

1. **Geography.**
2. **Social trends.**
3. **Alcohol and drug abuse.**
4. **Road traffic legislation.**
5. **Seasons.**

Geography

Numerous studies have now shown clear relationships between urban living and facial injuries, possibly linked to alcohol consumption and social deprivation. Not surprisingly agricultural-type injuries are more commonly seen in rural communities. In developing countries where there is a rapid increase in road traffic, motor vehicle related trauma is still a major cause of fractures. In some countries, notably in some states in the USA, gunshot trauma now exceeds road traffic accidents as a cause of facial injuries.

Social trends

In more recent years in urban areas, interpersonal violence has accounted for an increasing proportion of facial bone fractures. This includes domestic abuse. Data from a number of centres around the world suggests that interpersonal violence now accounts for more than half of all facial injuries seen in emergency departments. In the United Kingdom between 1977 and 1987 there was a 47% increase in maxillofacial injuries caused by assault, while simultaneously there was a 34% decrease in road accident victims with facial bone fractures. The relative incidence of other facial injuries, such as lacerations, has also been influenced by these trends.

Alcohol and drug abuse

In many countries alcohol and drug abuse are now major factors in the aetiology of traumatic injuries. Maxillofacial injuries are commoner in young men than any other group and to a large extent this is a reflection of the increased alcohol consumption by this section of society and the violence that may ensue. Indeed it has been said that ‘the combination of alcohol and testosterone is a potent mix’. Alcohol and drugs may also be a significant factor in maxillofacial injuries sustained
Aetiology and principles of treatment

by road users. The influence of alcohol on maxillofacial trauma was clearly demonstrated in a large prospective study of 6114 facial injuries presenting over a period of one week to 163 UK emergency departments. Of these, 40% of facial injuries were caused by falls, a large proportion of which were in children under five years and occurred within the home. However, 24% of the injuries were caused by interpersonal violence, mainly in young adults. In this group alcohol consumption was implicated in some way in 55%. Only 5% of facial injuries were caused by road traffic accidents (RTA) with 15% of victims having consumed alcohol. The 15–25 age group suffered the greatest number of facial injuries due to either assault or RTA and had the highest number of injuries associated with alcohol consumption. Overall at least 22% of all facial injuries in all age groups were related to alcohol consumption within 4 hours of the injury.

Road traffic legislation

Vehicle safety design has been influenced both by research and legislation, and in many countries the use of seat belt restraint has now been made compulsory in law. Seat belts have resulted in a dramatic decrease in injuries overall and severe injury in particular and that general trend has been reflected in the incidence of facial injury. The beneficial effects of improved car design and the use of seat belts are now well accepted, although there is some evidence that seat belts are not entirely effective in reducing the incidence of mandibular fractures. Air bags have also been associated with particular injury patterns to the orbit and globe. Interestingly, enforced low speed limits do not appear to carry the same benefit for facial fractures compared with other types of injury. Presumably, as a result of these changes, many patients who would have otherwise died are now surviving. Helmets are also mandatory for cyclists and motorcyclists alike in many countries, although most cycle helmets are primarily designed for brain protection and offer little effective protection to the face.

Seasons

Facial fractures show a seasonal variation in most temperate zones, which reflects the increased traffic and increased urban violence during summer months and the adverse road conditions in the presence of snow and ice in mid-winter. Sporting injuries also show a marked seasonal variation. Seasonal affective disorders and failed attempts at suicide may make a very small contribution in some countries.

Principles of treatment

Surgical anatomy

The facial skeleton

Understanding the applied surgical anatomy of the facial skeleton and its associated structures is extremely important in the assessment and management of facial fractures. Specific fracture patterns are well known to commonly occur and the effects of displaced bone fragments, notably at the skull base and orbital apex, can dramatically affect risks and outcomes. Traditionally the facial skeleton has been divided into an upper, middle and lower third. The lower third is the mandible. The middle third is formed by the frontal bone. The upper third extends downwards from the frontal bone to the level of the upper teeth, or if the patient is edentulous the upper alveolus. However, this arbitrary division now has much less role to play in modern management. The terminology used can also sometimes be a little confusing. Fractures of the middle third of the face are often referred to as ‘upper jaw fractures’ or ‘fractures of the maxilla’. However, in view of the fact that the adjacent bones are almost invariably involved, these terms are not strictly accurate. It is perhaps better to use the terms ‘midfacial’ and ‘fractures of the midface’ (Fig. 1.1).

From a functional point of view, an interesting and teleological question is, ‘Why do some animals have sinuses?’ A number of theories exist, but the answer is still unclear. One suggestion is that the skeleton of the midface has evolved into a protective ‘crumple zone’, functioning much like the chassis of a modern car. As such it acts as a cushion, absorbing the energy of any cranially directed impacts coming from an anterior or anterolateral direction. The midface can be considered as a fragile ‘matchbox’ sitting below and in front of a hard shell containing the brain. In this respect it differs markedly from the rigid projection of the mandible below (Fig. 1.2). The midfacial bones have the capacity to absorb impact energy, thereby protecting the brain and conferring a survival advantage. Any impact directly applied to the cranium may be sufficient to cause severe brain injury. However, the same force applied to the