Biomedical Calculations
Biomedical Calculations
Principles and Practice

Richard F. Burton
Institute of Biomedical and Life Sciences
University of Glasgow, UK
Contents

Preface xi
This book, and how to use it xv

Part I 1

1 Unit analysis: the neglected key to confidence 3
 1.1 Calculating with units 3
 1.2 Ways of writing composite units 5
 1.3 How unit analysis can guide thinking and help solve problems 5
 1.4 When to specify substances along with units 6
 1.5 The need to use appropriate and compatible units in formulae 7
 1.6 Checking and deriving formulae 8
 1.7 When unit analysis raises questions about formulae 10
 1.8 Dimensional analysis 10

Part II 13

2 Units: length, area, volume, mass, moles and equivalents 15
 2.1 The Système International and unit prefixes 15
 2.2 Length and distance 16
 2.3 Area 17
 2.4 Volume 17
 2.5 Mass 17
 2.6 Moles 18
 2.7 Equivalents 19
 2.8 Conversion between units 20
 Problems 22
3 Percentages
- 3.1 When percentages mislead: human body fat and fat in milk 24
- 3.2 Heat loss from the body: further questionable percentages 27
 - Problems 28

4 Composite units I – density
- 4.1 Specific gravity 30
- 4.2 Specific volume 30
- 4.3 Two definitions of body density 31
- 4.4 Thinking about a formula 33
 - Problems 33

5 Composite units II – concentration
- 5.1 Concentrations: kilograms of water vs litres of solution 36
- 5.2 Simple protein-free salt solutions 37
- 5.3 Millimolar and millimolal concentrations in blood plasma 38
- 5.4 Some quite different uses for Eq. (5.1) 39
 - Problems 39

6 Aspects of problem solving
- 6.1 Letting unit analysis solve the problem 41
- 6.2 ‘Let x be the unknown’ 44
 - Problems 49

7 Making up and diluting solutions
- 7.1 Preparing 250 mL of 150 mM NaCl from the dry salt 51
- 7.2 Preparing dilutions from stock solutions 53
 - Problems 56

8 Calculating drug doses
 - Problems 59

9 More about solutions – electroneutrality, osmotic pressure and activity
- 9.1 The principle of electroneutrality 61
- 9.2 But what about membrane potentials and short-circuit currents? 64
- 9.3 Anion gap 64
- 9.4 Osmoles and osmolality 66
- 9.5 Osmolar gap 68
- 9.6 Osmosity 70
- 9.7 Cell contents 70
- 9.8 Effective osmolality, effective osmotic pressure 72
- 9.9 Osmotic shifts of water between cells and extracellular fluid 73
- 9.10 Free and bound concentrations, activities 76
CONTENTS

79

Part III

10 Graphs, straight lines and equations

10.1 Graphs: some terminology
10.2 Advice on drawing graphs
10.3 The equation of a straight line
10.4 Finding the equation of a line that passes through two specified points
10.5 Drawing a line that is defined by a specified equation
10.6 Finding the equation of a line from its gradient and the coordinates of a single point on it
10.7 Finding the line that best fits a number of points when these lie only roughly in a straight line
10.8 ‘Proportional’ and ‘inversely proportional’
10.9 Gradients of curves
10.10 A note on units
10.11 On the different kinds of formulae and equations
Problems

11 On shapes and sizes

11.1 Areas and volumes of simple shapes
11.2 Erythrocytes, cylinders and spheres
11.3 The swelling of erythrocytes in hypo-osmotic solutions
11.4 Distortion of erythrocytes in passing along narrow blood vessels
11.5 An exercise in rearranging equations to eliminate an unwanted term
11.6 Easy and general ways to check algebraic working
11.7 Solving the equation by trial and error in a spreadsheet
11.8 Why do we not have naturally spherical erythrocytes?
11.9 General properties of simple geometrical shapes
11.10 Replacing volumes with masses in these equations
11.11 A digression on graphs
11.12 Calculating surface area from volume and height: another exercise in re-arranging equations and eliminating unwanted terms
11.13 Another digression to check algebraic working
11.14 Generalizing the formula to include the human body
11.15 Surface/volume and surface/mass ratios
11.16 The surface area of the human body
11.17 Standard formulae for body surface area
11.18 An exercise in comparing formulae containing exponents
Problems

12 Body size, body build, fatness and muscularity: unit analysis as an aid to discovery

12.1 Variations in fat-free mass with height and age
12.2 The Rohrer index, or ‘height–weight index of build’
12.3 The body mass index; estimating body fat from body mass and height
CONTENTS

12.4 Upper arm muscle: how its cross-sectional area varies with body height 131
12.5 Weightlifting – and the cross-sectional area of muscle 133
12.6 Estimating body fat from skinfold thickness measurements 136
12.7 Postscript 138
Problems 139

Part IV

13 **Introducing time** 143

13.1 Frequency 143
13.2 Speed and velocity 144
13.3 Acceleration 145
13.4 Rates of flow of substances carried in fluids 145
13.5 Thinking about a formula 146
13.6 The concept of renal clearance 151
13.7 Relating the clearance formula for renal plasma flow to the Fick Principle 154
13.8 Creatinine clearance as a measure of GFR, and a convenient formula for estimating it 154
Problems 156

Part V

14 **Force, pressure, energy, work and power** 161

14.1 Force and weight 161
14.2 Pressure 163
14.3 Columns of water, columns of blood 164
14.4 Osmotic pressure and colloid osmotic pressure (oncotic pressure) 165
14.5 Energy and work 167
14.6 Power 169
14.7 An overview of units – from mass to pressure and power 170
Problems 171

15 **Lessons from another formula** 173

15.1 Poiseuille’s equation and viscosity 173
15.2 Peripheral resistance 175
Problems 176

16 **Heat and temperature** 177

16.1 Temperature scales 177
16.2 The temperature coefficient, Q_{10} 179
16.3 Heat capacity and specific heat 179
Problems 180
CONTENTS

17 Gases: dry and wet gas mixtures, partial pressures, gases in solution
17.1 A reminder of units
17.2 Natural variations in atmospheric pressure
17.3 The gas laws
17.4 A closer look at Eq. (17.1) and the universal gas constant, with attention to units
17.5 Treatment of gas mixtures – percentages
17.6 Treatment of gas mixtures – partial pressures, tensions
17.7 Water vapour pressure
17.8 ‘Standard temperature and pressure, dry’
17.9 Dissolved O₂ and CO₂ in blood plasma and other fluids
Problems

Part VI

18 Introduction to logarithms
18.1 Definitions
18.2 Rules for working with logarithms
18.3 The usefulness of remembering log₁₀ 2
18.4 Logarithmic scales on graphs
18.5 What about units?
18.6 Natural logarithms
Problems

19 Exponential time courses
19.1 Use of semi-logarithmic plots
19.2 Common complications
Problems

20 Nernst equations in physiology and biochemistry: logarithms and ‘RT/zF’
20.1 More on RT/zF
Problems

21 pH – two definitions and a possible dilemma for teachers
21.1 pH as −log [H⁺]
21.2 The true definition of pH: pH as a number on a conventional scale
21.3 The meaning of 10⁻⁻ⁿ
21.4 Final comments
Problems
CONTENTS

22 Equilibrium constants, the Henderson–Hasselbalch equation, dose–response curves 219
 22.1 Equilibrium constants 219
 22.2 Concentrations or activities? 222
 22.3 The Henderson–Hasselbalch equation 222
 22.4 Application of the Henderson–Hasselbalch equation to drugs 223
 22.5 The dependence of [AB] on [A] when ([B] + [AB]) is constant 224
 22.6 Concentration–response curves and dose–response curves 227
 Problems 229

23 Buffering and acid–base balance 231
 23.1 Non-bicarbonate buffering 232
 23.2 A link with dose–response curves 235
 23.3 Bicarbonate buffering 236
 23.4 CO₂/HCO₃⁻ and non-bicarbonate buffers together 239
 23.5 The whole body: diet and the titratable acidity of urine 241
 23.6 Other aspects of acid–base balance 242
 Problems 243

Appendix A. Basic mathematics and mathematical language 245
Appendix B. Some non-metric units 253
Appendix C. Notes 255
Appendix D. Solutions to problems 265
References 287
Index 291
Preface

This is a guide to quantitative thinking in the biomedical sciences for students and professionals. Many students are unsure about such basic concepts as 10^{-3}, $x^{1/2}$, log x, reciprocal, percentage, microlitre, millimoles per litre, order of magnitude and calories. Other people who understand these well may yet falter in applying them – whether to straightforward situations like preparing drug solutions or to more interesting quantitative problems. The book is intended to help all such people. Its backbone is one simple, but neglected idea that can transform one’s abilities. However, because no such idea can suffice if one lacks basic concepts like those I have just listed, I try to provide these in a way that will not alienate those who already have them. The biomedical examples may prove interesting in themselves, for some are not to be found in other textbooks.

I do not write books without some personal inner drive. (Moreover, echoing Spike Milligan, ‘I vowed never to write another [science] book – and this is it’.) I am not innately clever at solving quantitative problems myself, but a few years ago I came upon the simple key, or guiding principle, to what I like to call ‘calculating science’. I do not recall when the penny dropped, but there is nothing like revelations late in life for creating zealots! What I realized was that, if I paid more attention to the units involved (e.g. grams per litre, kg m s$^{-2}$ etc.), answers to calculations could sometimes emerge automatically with little need for further reasoning – and my mistakes were fewer. The benefits were most obvious when a weary brain was applied to unfamiliar aspects of biology. Some readers will think I discovered the obvious. Indeed page four of the physics textbook I used at school implies in one paragraph much of what struck me only later as a revelation. However, that otherwise excellent book gave the matter too little emphasis and did not include units in the working of its subsequent calculations. Many recent physics textbooks also fail to do so. So what is really an ancient principle is too often neglected. Regardless of what schoolbooks may say about it and teachers teach,
there are certainly many university students, and indeed professional scientists, who have not acquired this key to confident quantitative thinking.

A good name for this idea is ‘unit analysis’. I spell it out in Chapter 1 and hope that its full nature and power will be further revealed throughout the book. So far I am emphasizing the value of unit analysis in calculations, but it may also be applied in contexts where no numbers are involved, as when one is trying to make sense of formulae and equations. In that context, readers familiar with ‘dimensional analysis’ will see that the two ideas are closely related. Dimensional analysis, which is outlined in Chapter 1, can be more elegant, but is often less helpful in biological contexts. For consistency it is just unit analysis that I use here.

My first proper research, which was about the shapes of leaves and long ago, would have proceeded faster if I had understood dimensional or unit analysis. Now the challenge of writing this book has led me into a sideline of research (anthropometry) that I had no reason to contemplate otherwise. Either technique of analysis can prove invaluable as one tries to understand relationships amongst biological variables, and anthropometry has given me some useful illustrations of this.

Unit analysis calls for an understanding of units and, following a unit theme, I look successively at length, area, volume, mass, moles and equivalents, combining some of these as units for density and concentration. Time is added later, allowing treatment of speed, acceleration and rates of flow. Subsequent chapters add force and pressure, and then energy, work, power and temperature. Other topics are integrated into this progression according to the following guiding principles.

- The mathematics should be simple, involving nothing more advanced than exponents, logarithms and very basic algebra, and help is offered even with these. Topics requiring logarithms are confined to the final chapters.

- Formulae are not just to be applied, but, where possible, to be understood.

- Plotting and interpreting graphs are necessary skills.

- There are topics of enough general importance that they need to be included, such as dosage calculation, renal clearance, gas mixtures, buffering and acid–base balance. Not every reader will require these, but I try to make more general points in dealing with them. As I like to illustrate, a particular quantitative approach – a way of thinking or form of calculation – may apply in varied contexts.
Not all the biological topics need to be as exhaustively treated here as they are in standard courses and textbooks – so long as sufficient background is provided.

Desirable as it may be to work with a consistent set of units (e.g. SI), one should be able to cope happily with the variety of units that are inevitably encountered in the real world. Consistency is therefore unhelpful in this book.

The reader should be offered problems for practice, preferably problems having useful or informative answers.

There is no one ideal way of selecting and ordering my topics and of balancing levels of difficulty for a diverse readership, but I trust that my choices prove helpful and interesting.

Acknowledgements

I thank Dr Dorothy Aidulis for her comments and Dr Francis Burton for reading much of the manuscript and helping in the preparation of figures.

Richard F. Burton