Space–Time Coding for Broadband Wireless Communications

GEORGIOS B. GIANNAKIS
ZHIQIANG LIU
XIAOLI MA
SHENGLI ZHOU
This Page Intentionally Left Blank
Space–Time Coding for Broadband Wireless Communications
Each generation has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it!

William J. Pesce
President and Chief Executive Officer

Peter Booth Wiley
Chairman of the Board
Space–Time Coding for Broadband Wireless Communications

GEORGIOS B. GIANNAKIS
ZHIQIANG LIU
XIAOLI MA
SHENGLI ZHOU
To my parents, Sofia and Vassili
G. B. G.

To Guangmei and Gwyneth
Z. L.

To Xiangqian and my parents
X. M.

To Juanjuan and Daniel
S. Z.
This Page Intentionally Left Blank
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>xv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acronyms</td>
<td>xix</td>
</tr>
</tbody>
</table>

1 Motivation and Context
1.1 Evolution of Wireless Communication Systems 2
1.2 Wireless Propagation Effects 3
1.3 Parameters and Classification of Wireless Channels 5
 1.3.1 Delay Spread and Coherence Bandwidth 6
 1.3.2 Doppler Spread and Coherence Time 7
1.4 Providing, Enabling, and Collecting Diversity 11
 1.4.1 Diversity Provided by Frequency-Selective Channels 11
 1.4.2 Diversity Provided by Time-Selective Channels 13
 1.4.3 Diversity Provided by Multi-Antenna Channels 15
1.5 Chapter-by-Chapter Organization 18

2 Fundamentals of ST Wireless Communications 23
 2.1 Generic ST System Model 23
 2.2 ST Coding viz Channel Coding 27
 2.3 Capacity of ST Channels 29
 2.3.1 Outage Capacity 30
2.3.2 Ergodic Capacity 34
2.4 Error Performance of ST Coding 39
2.5 Design Criteria for ST Codes 43
2.6 Diversity and Rate: Finite SNR viz Asymptotics 44
2.7 Classification of ST Codes 48
2.8 Closing Comments 50

3 Coherent ST Codes for Flat Fading Channels 51
3.1 Delay Diversity ST Codes 51
3.2 ST Trellis Codes 53
 3.2.1 Trellis Representation 53
 3.2.2 TSC ST Trellis Codes 55
 3.2.3 BBH ST Trellis Codes 56
 3.2.4 GFK ST Trellis Codes 58
 3.2.5 Viterbi Decoding of ST Trellis Codes 60
3.3 Orthogonal ST Block Codes 61
 3.3.1 Encoding of OSTBCs 61
 3.3.2 Linear ML Decoding of OSTBCs 63
 3.3.3 BER Performance with OSTBCs 65
 3.3.4 Channel Capacity with OSTBCs 66
3.4 Quasi-Orthogonal ST Block Codes 68
3.5 ST Linear Complex Field Codes 70
 3.5.1 Antenna Switching and Linear Precoding 71
 3.5.2 Designing Linear Precoding Matrices 72
 3.5.3 Upper Bound on Coding Gain 72
 3.5.4 Construction Based on Parameterization 73
 3.5.5 Construction Based on Algebraic Tools 74
 3.5.6 Decoding ST Linear Complex Field Codes 76
 3.5.7 Modulus-Preserving STLCFC 79
3.6 Linking OSTBC, QO-STBC, and STLCFC Designs 82
 3.6.1 Embedding MP-STLCFCs into the Alamouti Code 82
 3.6.2 Embedding 2×2 MP-STLCFCs into an OSTBC 83
 3.6.3 Decoding QO-MP-STLCFC 84
3.7 Closing Comments 85

4 Layered ST Codes 87
4.1 BLAST Designs 88
 4.1.1 D-BLAST 88
CONTENTS

4.1.2 V-BLAST 91
4.1.3 Rate Performance with BLAST Codes 92
4.2 ST Codes Trading Diversity for Rate 93
4.2.1 Layered ST Codes with Antenna Grouping 93
4.2.2 Layered High-Rate Codes 94
4.3 Full-Diversity Full-Rate ST Codes 94
4.3.1 FDFR Transceiver 95
4.3.2 Algebraic FDFR Code Design 98
4.3.3 Mutual Information Analysis 99
4.3.4 Diversity-Rate-Performance Trade-offs 99
4.4 Numerical Examples 101
4.5 Closing Comments 104

5 Sphere Decoding and (Near-)Optimal MIMO Demodulation 105
5.1 Sphere Decoding Algorithm 106
5.1.1 Selecting a Finite Search Radius 108
5.1.2 Initializing with Unconstrained LS 109
5.1.3 Searching Within the Fixed-Radius Sphere 110
5.2 Average Complexity of The SDA in Practice 113
5.3 SDA Improvements 117
5.3.1 SDA with Detection Ordering and Nulling-Canceling 117
5.3.2 Schnorr-Euchner Variate of the SDA 118
5.3.3 SDA with Increasing Radius Search 119
5.3.4 Simulated Comparisons 120
5.4 Reduced-Complexity IRS-SDA 123
5.5 Soft-Decision Sphere Decoding 125
5.5.1 List Sphere Decoding 126
5.5.2 Soft SDA Using Hard SDAs 127
5.6 Closing Comments 129

6 Noncoherent and Differential ST Codes for Flat Fading Channels 133
6.1 Noncoherent ST Codes 133
6.1.1 Search-Based Designs 135
6.1.2 Training-Based Designs 138
6.2 Differential ST Codes 139
6.2.1 Scalar Differential Codes 140
6.2.2 Differential Unitary ST Codes 141
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3</td>
<td>Differential Alamouti Codes</td>
<td>144</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Differential OSTBCs</td>
<td>147</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Cayley Differential Unitary ST Codes</td>
<td>148</td>
</tr>
<tr>
<td>6.3</td>
<td>Closing Comments</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>ST Codes for Frequency-Selective Fading Channels: Single-Carrier Systems</td>
<td>151</td>
</tr>
<tr>
<td>7.1</td>
<td>System Model and Performance Limits</td>
<td>152</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Flat Fading Equivalence and Diversity</td>
<td>153</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Rate Outage Probability</td>
<td>154</td>
</tr>
<tr>
<td>7.2</td>
<td>ST Trellis Codes</td>
<td>156</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Generalized Delay Diversity</td>
<td>156</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Search-Based STTC Construction</td>
<td>158</td>
</tr>
<tr>
<td>7.3</td>
<td>ST Block Codes</td>
<td>161</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Block Coding with Two Transmit-Antennas</td>
<td>161</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Receiver Processing</td>
<td>164</td>
</tr>
<tr>
<td>7.3.3</td>
<td>ML Decoding Based on the Viterbi Algorithm</td>
<td>167</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Turbo Equalization</td>
<td>168</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Multi-Antenna Extensions</td>
<td>169</td>
</tr>
<tr>
<td>7.3.6</td>
<td>OSTBC Properties</td>
<td>172</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Numerical Examples</td>
<td>174</td>
</tr>
<tr>
<td>7.4</td>
<td>Closing Comments</td>
<td>177</td>
</tr>
<tr>
<td>8</td>
<td>ST Codes for Frequency-Selective Channels: Multi-Carrier Systems</td>
<td>179</td>
</tr>
<tr>
<td>8.1</td>
<td>General MIMO OFDM Framework</td>
<td>180</td>
</tr>
<tr>
<td>8.1.1</td>
<td>OFDM Basics</td>
<td>180</td>
</tr>
<tr>
<td>8.1.2</td>
<td>MIMO OFDM</td>
<td>183</td>
</tr>
<tr>
<td>8.1.3</td>
<td>STF Framework</td>
<td>184</td>
</tr>
<tr>
<td>8.2</td>
<td>ST and SF Coded MIMO OFDM</td>
<td>188</td>
</tr>
<tr>
<td>8.3</td>
<td>STF Coded OFDM</td>
<td>189</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Subcarrier Grouping</td>
<td>189</td>
</tr>
<tr>
<td>8.3.2</td>
<td>GSTF Block Codes</td>
<td>190</td>
</tr>
<tr>
<td>8.3.3</td>
<td>GSTF Trellis Codes</td>
<td>192</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Numerical Examples</td>
<td>195</td>
</tr>
<tr>
<td>8.4</td>
<td>Digital-Phase Sweeping and Block Circular Delay</td>
<td>197</td>
</tr>
<tr>
<td>8.5</td>
<td>Full-Diversity Full-Rate MIMO OFDM</td>
<td>201</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Encoders and Decoders</td>
<td>201</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Diversity and Rate Analysis</td>
<td>203</td>
</tr>
</tbody>
</table>
8.5.3 Numerical Examples

8.6 Closing Comments

9 ST Codes for Time-Varying Channels

9.1 Time-Varying Channels

9.1.1 Channel Models

9.1.2 Time-Frequency Duality

9.1.3 Doppler Diversity

9.2 Space-Time-Doppler Block Codes

9.2.1 Duality-Based STDO Codes

9.2.2 Phase Sweeping Design

9.3 Space-Time-Doppler FDFR Codes

9.4 Space-Time-Doppler Trellis Codes

9.4.1 Design Criterion

9.4.2 Smart-Greedy Codes

9.5 Numerical Examples

9.6 Space-Time-Doppler Differential Codes

9.6.1 Inner Codec

9.6.2 Outer Differential Codec

9.7 ST Codes for Doubly Selective Channels

9.7.1 Numerical Examples

9.8 Closing Comments

10 Joint Galois- and Linear Complex-Field ST Codes

10.1 GF-LCF ST Codes

10.1.1 Separate Versus Joint GF-LCF ST Coding

10.1.2 Performance Analysis

10.1.3 Turbo Decoding

10.2 GF-LCF Layered ST Codes

10.2.1 GF-LCF ST FDFR Codes: QPSK Signaling

10.2.2 GF-LCF ST FDFR Codes: QAM Signaling

10.2.3 Performance Analysis

10.2.4 GF-LCF FDFR Versus GF-Coded V-BLAST

10.2.5 Numerical Examples

10.3 GF-LCF Coded MIMO OFDM

10.3.1 Joint GF-LCF Coding and Decoding

10.3.2 Numerical Examples

10.4 Closing Comments
11 MIMO Channel Estimation and Synchronization 269
 11.1 Preamble-Based Channel Estimation 270
 11.2 Optimal Training-Based Channel Estimation 271
 11.2.1 ZP-Based Block Transmissions 274
 11.2.2 CP-Based Block Transmissions 283
 11.2.3 Special Cases 288
 11.2.4 Numerical Examples 290
 11.3 (Semi-)Blind Channel Estimation 293
 11.4 Joint Symbol Detection and Channel Estimation 294
 11.4.1 Decision-Directed Methods 294
 11.4.2 Kalman Filtering-Based Methods 295
 11.5 Carrier Synchronization 299
 11.5.1 Hopping Pilot-Based CFO Estimation 300
 11.5.2 Blind CFO Estimation 305
 11.5.3 Numerical Examples 307
 11.6 Closing Comments 310

12 ST Codes with Partial Channel Knowledge: Statistical CSI 313
 12.1 Partial CSI Models 315
 12.1.1 Statistical CSI 315
 12.2 ST Spreading 319
 12.2.1 Average Error Performance 321
 12.2.2 Optimization Based on Average SER Bound 323
 12.2.3 Mean Feedback 324
 12.2.4 Covariance Feedback 328
 12.2.5 Beamforming Interpretation 330
 12.3 Combining OSTBC with Beamforming 331
 12.3.1 Two-Dimensional Coder-Beamformer 333
 12.4 Numerical Examples 335
 12.4.1 Performance with Mean Feedback 335
 12.4.2 Performance with Covariance Feedback 339
 12.5 Adaptive Modulation for Rate Improvement 344
 12.5.1 Numerical Examples 347
 12.6 Optimizing Average Capacity 350
 12.7 Closing Comments 351

13 ST Codes with Partial Channel Knowledge: Finite-Rate CSI 353
 13.1 General Problem Formulation 354
13.2 Finite-Rate Beamforming
 13.2.1 Beamformer Selection 357
 13.2.2 Beamformer Codebook Design 357
 13.2.3 Quantifying the Power Loss 362
 13.2.4 Numerical Examples 364

13.3 Finite-Rate Precoded Spatial Multiplexing 366
 13.3.1 Precoder Selection Criteria 367
 13.3.2 Codebook Construction: Infinite Rate 369
 13.3.3 Codebook Construction: Finite Rate 371
 13.3.4 Numerical Examples 374

13.4 Finite-Rate Precoded OSTBC 380
 13.4.1 Precoder Selection Criterion 381
 13.4.2 Codebook Construction: Infinite Rate 381
 13.4.3 Codebook Construction: Finite Rate 382
 13.4.4 Numerical Examples 382

13.5 Capacity Optimization with Finite-Rate Feedback 383
 13.5.1 Selection Criterion 383
 13.5.2 Codebook Design 384

13.6 Combining Adaptive Modulation with Beamforming 385
 13.6.1 Mode Selection 386
 13.6.2 Codebook Design 386

13.7 Finite-Rate Feedback in MIMO OFDM 387

13.8 Closing Comments 388

14 ST Codes in the Presence of Interference 391
 14.1 ST Spreading 392
 14.1.1 Maximizing the Average SINR 393
 14.1.2 Minimizing the Average Error Bound 394
 14.2 Combining STS with OSTBC 396
 14.2.1 Low-Complexity Receivers 399
 14.3 Optimal Training with Interference 399
 14.3.1 LS Channel Estimation 400
 14.3.2 LMMSE Channel Estimation 401
 14.4 Numerical Examples 401
 14.5 Closing Comments 408

15 ST Codes for Orthogonal Multiple Access 409
 15.1 System Model 410