Failure Analysis of Paints and Coatings

Revised Edition
To my son Andy, who can still make me smile.
Contents

Preface to the Revised Edition xiii
Preface to the First Edition xv
Acknowledgements xvii

1 General Principles of Coating Formulation 1
 1.1 Introduction 1
 1.2 Binders 2
 1.3 Pigments 4
 1.4 Solvents 5
 1.5 Additives 5
 1.6 Formulation Concepts: Pigment-to-Binder Ratio 6
 1.7 Formulation Concepts: Pigment-Volume Concentration 6
 1.8 Formulation Concepts: Density, Weight Solids and Volume Solids 7
 References 8

2 Why Coatings Work and Why They Fail 9
 2.1 Why Coatings Work 9
 2.1.1 Adhesion 9
 2.1.2 Wetting 10
 2.1.3 Surface Preparation 14
 2.1.4 Cohesive Strength 23
 2.1.5 Permeability 23
 2.2 Why Coatings Fail 24
 2.2.1 Mechanical Stress 25
 2.2.2 Internal Stress 29
 2.2.3 Chemical Attack 31
 2.2.4 Weathering Stress 33
3 Pigments

3.1 Inorganic Pigments
3.1.1 Inorganic Colour Pigments – White
3.1.2 Inorganic Colour Pigments – Yellow
3.1.3 Inorganic Colour Pigments – Orange
3.1.4 Inorganic Colour Pigments – Red
3.1.5 Inorganic Colour Pigments – Blue
3.1.6 Inorganic Colour Pigments – Green

3.2 Extender Pigments
3.2.1 Silica/Silicates
3.2.2 Calcium Carbonate
3.2.3 Barytes

3.3 Corrosion-Resistant Pigments

3.4 Organic Pigments
3.4.1 Organic Red Pigments
3.4.2 Organic Yellow Pigments
3.4.3 Organic Blue Pigments
3.4.4 Organic Green Pigments

References

4 Additives and Solvents

4.1 Additives
4.1.1 Anti-settling Agents
4.1.2 Viscosity Modifiers
4.1.3 Surfactants and Emulsifying Agents
4.1.4 De-foaming and Anti-foaming Agents
4.1.5 Driers
4.1.6 Plasticizers
4.1.7 Ultraviolet Stabilizers
4.1.8 Anti-skinning Agents
4.1.9 Biocides
4.1.10 Flow-Modifying Agents

4.2 Solvents

References

5 Coating Types and Common Failure Modes

5.1 Natural Resins and Oils
5.1.1 Natural Resins
5.1.2 Oils
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Alkyds and Epoxy Esters</td>
<td>70</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Alkyds</td>
<td>70</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Epoxy Esters</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Epoxies</td>
<td>75</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Amine and Amide Curing Agents for Epoxy Resins</td>
<td>76</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Epoxy Failure Modes</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Modified Epoxies</td>
<td>84</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Acrylic Epoxies</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Coal Tar Epoxies</td>
<td>85</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Epoxy Phenolics</td>
<td>85</td>
</tr>
<tr>
<td>5.5</td>
<td>Phenolics</td>
<td>86</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Resole Phenolics</td>
<td>86</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Novolac Phenolics</td>
<td>87</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Phenolic Failure Modes</td>
<td>87</td>
</tr>
<tr>
<td>5.6</td>
<td>Amino Resins</td>
<td>88</td>
</tr>
<tr>
<td>5.7</td>
<td>Acrylics</td>
<td>90</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Solution Acrylics</td>
<td>91</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Acrylic Latex Coatings</td>
<td>92</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Thermoset Acrylics</td>
<td>95</td>
</tr>
<tr>
<td>5.8</td>
<td>Polyesters</td>
<td>96</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Saturated Polyesters</td>
<td>97</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Unsaturated Polyesters</td>
<td>100</td>
</tr>
<tr>
<td>5.9</td>
<td>Polyurethanes</td>
<td>101</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Two-Component Polyisocyanate/Polyol Coatings</td>
<td>103</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Urealkyds</td>
<td>106</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Moisture-Cured Polyurethanes</td>
<td>107</td>
</tr>
<tr>
<td>5.9.4</td>
<td>Polyurethane Lacquers and Dispersions</td>
<td>108</td>
</tr>
<tr>
<td>5.9.5</td>
<td>Two-Component Water-Borne Polyurethanes</td>
<td>108</td>
</tr>
<tr>
<td>5.10</td>
<td>Vinlys</td>
<td>109</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Solution Vinlys</td>
<td>109</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Plastisols and Organosols</td>
<td>110</td>
</tr>
<tr>
<td>5.10.3</td>
<td>Vinyl Fluorides</td>
<td>110</td>
</tr>
<tr>
<td>5.10.4</td>
<td>Poly(vinyl butyral)</td>
<td>111</td>
</tr>
<tr>
<td>5.10.5</td>
<td>Vinyl Latexes</td>
<td>111</td>
</tr>
<tr>
<td>5.11</td>
<td>Bituminous Coatings</td>
<td>112</td>
</tr>
<tr>
<td>5.12</td>
<td>Inorganic and Silicone-Modified Coatings</td>
<td>114</td>
</tr>
<tr>
<td>5.12.1</td>
<td>Silicone Coatings</td>
<td>114</td>
</tr>
<tr>
<td>5.12.2</td>
<td>Silicate Coatings</td>
<td>116</td>
</tr>
<tr>
<td>5.12.3</td>
<td>Polysiloxane Coatings</td>
<td>118</td>
</tr>
<tr>
<td>5.13</td>
<td>Polyureas</td>
<td>120</td>
</tr>
<tr>
<td>5.13.1</td>
<td>Polyaspartic Polyurea Coatings</td>
<td>121</td>
</tr>
<tr>
<td>5.14</td>
<td>Powder Coatings</td>
<td>122</td>
</tr>
<tr>
<td>References</td>
<td>124</td>
<td></td>
</tr>
</tbody>
</table>
6 Application-Related Problems 125
6.1 Brush and Roller 125
6.2 Spray Applications 126
6.2.1 Air (Conventional) Spray 126
6.2.2 Airless Spray 126
6.2.3 Plural Spray 127
6.2.4 Electrostatic Spray 127
6.3 Flow Coating 127
6.4 Roll Coating 128
6.5 Powder Coating 128
6.6 Coating Failures Related to Application Problems 129
References 134

7 Field Methods 135

8 Analytical Methods 141
8.1 Light Microscopy 141
8.2 Infrared Spectroscopy 152
8.2.1 Theory 152
8.2.2 Instrumentation 166
8.2.3 Sample Handling 169
8.2.4 Applications 177
8.3 Gas Chromatography (GC) 202
8.3.1 Theory of GC 202
8.3.2 Instrumentation 208
8.3.3 Pyrolysis-GC 216
8.3.4 Application of GC 217
8.4 Gel Permeation Chromatography (GPC) 221
8.4.1 Theory 222
8.4.2 Instrumentation 226
8.4.3 Applications 227
8.5 Ion Chromatography 232
8.5.1 Theory 232
8.5.2 Applications 237
8.6 Scanning Electron Microscopy 238
8.6.1 Imaging Theory 239
8.6.2 Elemental Analysis by X-ray Spectroscopy 241
8.6.3 Sample Preparation 244
8.6.4 Applications of SEM-EDS 244
8.7 Differential Scanning Calorimetry (DSC) 247
8.7.1 Theory 247
8.7.2 Calibration and Sample Preparation 250
8.7.3 Applications of DSC 252
8.8 Miscellaneous Methods of Analysis 258
References 259
Preface to the Revised Edition

It has been over 8 years since the first edition of *Failure Analysis of Paints and Coatings* was published. During this period, many coating types have remained the same, and a few new ones have been introduced, or at least have been more heavily marketed. Advances have been made in surface preparation technology, and more opportunities for training and education have been made available than ever before. However, in spite of all of this, the coatings industry still experiences its fair share of failures.

A coating failure does not just involve the cost of some paint. Repair of an existing structure can be extremely expensive, perhaps even entailing lost production time if the facility has to be shut down for repairs. If a coating lining a process vessel or a railroad tank car fails, large amounts of product may become unmarketable and may have to be disposed of. Reputations can be damaged. The cost of a paint failure is seldom cheap.

The first edition of this book introduced some basic concepts in paint formulation and chemistry. This has been updated in the second edition to include some additional types of coatings, such as polyureas, polysiloxanes and powder coatings. Some additional discussion has been included concerning surface preparation, the mechanism of blistering and the chemistry of amine blush. Analytical techniques such as gas chromatography–mass spectroscopy and differential scanning calorimetry have been discussed in more detail. However, as with the first edition, the subjects of coatings chemistry and analytical chemistry are presented at the introductory level. Although essential to conducting a failure analysis, many thorough texts already exist on these subjects.

As pointed out in the preface to the first edition, the failure analysis of paints and coatings is all about problem solving. Problem solving is a difficult subject to teach, and probably relies on curiosity and experience more than anything else. Therefore, in addition to the basics of coatings science and analytical chemistry, which form the foundation upon which curiosity and experience can build, this book contains numerous practical examples of solving real-world coating failures. Indeed, the biggest difference between the first and second editions is