The Mathematics of
Financial Modeling
and Investment Management

SERGIO M. FOCARDI
FRANK J. FABOZZI
Contents

Preface xiv
Acknowledgments xvi
About the Authors xviii
Commonly Used Symbols xix
Abbreviations and Acronyms xx

CHAPTER 1
From Art to Engineering in Finance 1
- Investment Management Process 2
 - Step 1: Setting Investment Objectives 2
 - Step 2: Establishing an Investment Policy 2
 - Step 3: Selecting a Portfolio Strategy 6
 - Step 4: Selecting the Specific Assets 7
 - Step 5: Measuring and Evaluating Performance 9
- Financial Engineering in Historical Perspective 10
- The Role of Information Technology 11
- Industry’s Evaluation of Modeling Tools 13
- Integrating Qualitative and Quantitative Information 15
- Principles for Engineering a Suite of Models 17
- Summary 18

CHAPTER 2
Overview of Financial Markets, Financial Assets, and Market Participants 21
- Financial Assets 21
- Financial Markets 25
 - Classification of Financial Markets 25
 - Economic Functions of Financial Markets 26
 - Secondary Markets 27
- Overview of Market Participants 34
 - Role of Financial Intermediaries 35
 - Institutional Investors 37
 - Insurance Companies 41
 - Pension Funds 41
 - Investment Companies 42
 - Depository Institutions 43
 - Endowments and Foundations 45
- Common Stock 45
Contents

Trading Locations 45
Stock Market Indicators 46
Trading Arrangements 48
Bonds 51
 Maturity 51
 Par Value 52
 Coupon Rate 52
 Provisions for Paying off Bonds 55
 Options Granted to Bondholders 56
Futures and Forward Contracts 57
 Futures versus Forward Contracts 58
Risk and Return Characteristics of Futures Contracts 59
 Pricing of Futures Contracts 59
The Role of Futures in Financial Markets 63
Options 64
 Risk-Return for Options 66
 The Option Price 66
Swaps 69
Caps and Floors 70
Summary 71

CHAPTER 3
Milestones in Financial Modeling and Investment Management 75
The Precursors: Pareto, Walras, and the Lausanne School 76
Price Diffusion: Bachelier 78
The Ruin Problem in Insurance: Lundberg 80
The Principles of Investment: Markowitz 81
Understanding Value: Modigliani and Miller 83
 Modigliani-Miller Irrelevance Theorems and the
 Absence of Arbitrage 84
Efficient Markets: Fama and Samuelson 85
Capital Asset Pricing Model: Sharpe, Lintner, and Mossin 86
The Multifactor CAPM: Merton 87
Arbitrage Pricing Theory: Ross 88
Arbitrage, Hedging, and Option Theory:
 Black, Scholes, and Merton 89
Summary 90

CHAPTER 4
Principles of Calculus 91
Sets and Set Operations 93
 Proper Subsets 93
 Empty Sets 95
Union of Sets 95
Intersection of Sets 95
Elementary Properties of Sets 96
Distances and Quantities 96
 n-tuples 97
 Distance 98
Contents

Outcomes and Events 169
Probability 170
Measure 171
Random Variables 172
Integrals 172
Distributions and Distribution Functions 174
Random Vectors 175
Stochastic Processes 178
Probabilistic Representation of Financial Markets 180
Information Structures 181
Filtration 182
Conditional Probability and Conditional Expectation 184
Moments and Correlation 186
Copula Functions 188
Sequences of Random Variables 189
Independent and Identically Distributed Sequences 191
Sum of Variables 191
Gaussian Variables 194
The Regression Function 197
Linear Regression 197
Summary 199

CHAPTER 7

Optimization 201
Maxima and Minima 202
Lagrange Multipliers 204
Numerical Algorithms 206
Linear Programming 206
Quadratic Programming 211
Calculus of Variations and Optimal Control Theory 212
Stochastic Programming 214
Summary 216

CHAPTER 8

Stochastic Integrals 217
The Intuition Behind Stochastic Integrals 219
Brownian Motion Defined 225
Properties of Brownian Motion 230
Stochastic Integrals Defined 232
Some Properties of Itô Stochastic Integrals 236
Summary 237

CHAPTER 9

Differential Equations and Difference Equations 239
Differential Equations Defined 240
Ordinary Differential Equations 240
Order and Degree of an ODE 241
Solution to an ODE 241
Systems of Ordinary Differential Equations 243
Contents

Closed-Form Solutions of Ordinary Differential Equations 246
 Linear Differential Equation 247
Numerical Solutions of Ordinary Differential Equations 249
 The Finite Difference Method 249
Nonlinear Dynamics and Chaos 256
 Fractals 258
Partial Differential Equations 259
 Diffusion Equation 259
 Solution of the Diffusion Equation 261
 Numerical Solution of PDEs 263
Summary 265

CHAPTER 10
Stochastic Differential Equations 267
 The Intuition Behind Stochastic Differential Equations 268
 Itô Processes 271
 The 1-Dimensional Itô Formula 272
 Stochastic Differential Equations 274
 Generalization to Several Dimensions 276
 Solution of Stochastic Differential Equations 278
 The Arithmetic Brownian Motion 280
 The Ornstein-Uhlenbeck Process 280
 The Geometric Brownian Motion 281
Summary 282

CHAPTER 11
 Concepts of Time Series 284
 Stylized Facts of Financial Time Series 286
 Infinite Moving-Average and Autoregressive
 Representation of Time Series 288
 Univariate Stationary Series 288
 The Lag Operator L 289
 Stationary Univariate Moving Average 292
 Multivariate Stationary Series 293
 Nonstationary Series 295
ARMA Representations 297
 Stationary Univariate ARMA Models 297
 Nonstationary Univariate ARMA Models 300
 Stationary Multivariate ARMA Models 301
 Nonstationary Multivariate ARMA Models 304
 Markov Coefficients and ARMA Models 304
 Hankel Matrices and ARMA Models 305
State-Space Representation 305
 Equivalence of State-Space and ARMA Representations 308
Integrated Series and Trends 309
Summary 313
CHAPTER 12
Financial Econometrics: Model Selection, Estimation, and Testing 315

- Model Selection 315
- Learning and Model Complexity 317
- Maximum Likelihood Estimate 319
- Linear Models of Financial Time Series 324
- Random Walk Models 324
- Correlation 327
- Random Matrices 329
- Multifactor Models 332
 - CAPM 334
 - Asset Pricing Theory (APT) Models 335
 - PCA and Factor Models 335
- Vector Autoregressive Models 338
 - Cointegration 339
 - State-Space Modeling and Cointegration 342
- Empirical Evidence of Cointegration in Equity Prices 343
 - Nonstationary Models of Financial Time Series 345
 - The ARCH/GARCH Family of Models 346
 - Markov Switching Models 347
- Summary 349

CHAPTER 13
Fat Tails, Scaling, and Stable Laws 351

- Scaling, Stable Laws, and Fat Tails 352
 - Fat Tails 352
 - The Class \mathcal{L} of Fat-Tailed Distributions 353
 - The Law of Large Numbers and the Central Limit Theorem 358
 - Stable Distributions 360
- Extreme Value Theory for IID Processes 362
 - Maxima 362
 - Max-Stable Distributions 368
 - Generalized Extreme Value Distributions 368
 - Order Statistics 369
 - Point Process of Exceedances or Peaks over Threshold 371
 - Estimation 373
- Eliminating the Assumption of IID Sequences 378
 - Heavy-Tailed ARMA Processes 381
 - ARCH/GARCH Processes 382
 - Subordinated Processes 383
 - Markov Switching Models 384
 - Estimation 384
 - Scaling and Self-Similarity 385
- Evidence of Fat Tails in Financial Variables 388
- On the Applicability of Extreme Value Theory in Finance 391
- Summary 392
CHAPTER 16

Portfolio Selection Using Mean-Variance Analysis

- Diversification as a Central Theme in Finance 472
- Markowitz’s Mean-Variance Analysis 474
- Capital Market Line
 - Deriving the Capital Market Line 478
 - What is Portfolio M? 481
 - Risk Premium in the CML 482
- The CML and the Optimal Portfolio
 - Utility Functions and Indifference Curves 482
 - Selection of the Optimal Portfolio 484
- Extension of the Markowitz Mean-Variance Model to Inequality Constraints 485
- A Second Look at Portfolio Choice
 - The Return Forecast 487
 - The Utility Function 488
 - Optimizers 490
 - A Global Probabilistic Framework for Portfolio Selection 490
- Relaxing the Assumption of Normality 491
- Multiperiod Stochastic Optimization 492
- Application to the Asset Allocation Decision
 - The Inputs 495
 - Portfolio Selection: An Example 500
 - Inclusion of More Asset Classes 503
- Extensions of the Basic Asset Allocation Model 507
 - Summary 509

CHAPTER 17

Capital Asset Pricing Model

- CAPM Assumptions 512
- Systematic and Nonsystematic Risk 513
- Security Market Line
 - Estimating the Characteristic Line 518
- Testing The CAPM
 - Deriving the Empirical Analogue of the CML 518
 - Empirical Implications 519
 - General Findings of Empirical Tests of the CAPM 520
 - A Critique of Tests of the CAPM 520
 - Merton and Black Modifications of the CAPM 521
 - CAPM and Random Matrices 522
- The Conditional CAPM 523
- Beta, Beta Everywhere 524
- The Role of the CAPM in Investment Management Applications 525
 - Summary 526

CHAPTER 18

Multifactor Models and Common Trends for Common Stocks

- Multifactor Models 530
 - Determination of Factors 532
Contents

Dynamic Market Models of Returns 537
Estimation of State-Space Models 538
Dynamic Models for Prices 538
Estimation and Testing of Cointegrated Systems 543
Cointegration and Financial Time Series 544
Nonlinear Dynamic Models for Prices and Returns 546
Summary 549

CHAPTER 19
Equity Portfolio Management 551
Integrating the Equity Portfolio Management Process 551
Active versus Passive Portfolio Management 552
Tracking Error 553
Backward-Looking versus Forward-Looking Tracking Error 555
The Impact of Portfolio Size, Benchmark Volatility, and Portfolio Beta on Tracking Error 556
Equity Style Management 560
Types of Equity Styles 560
Style Classification Systems 562
Passive Strategies 564
Constructing an Indexed Portfolio 564
Index Tracking and Cointegration 565
Active Investing 566
Top-Down Approaches to Active Investing 566
Bottom-Up Approaches to Active Investing 567
Fundamental Law of Active Management 568
Strategies Based on Technical Analysis 571
Nonlinear Dynamic Models and Chaos 573
Technical Analysis and Statistical Nonlinear Pattern Recognition 574
Market-Neutral Strategies and Statistical Arbitrage 575
Application of Multifactor Risk Models 577
Risk Decomposition 577
Portfolio Construction and Risk Control 582
Assessing the Exposure of a Portfolio 583
Risk Control Against a Stock Market Index 587
Tilting a Portfolio 587
Summary 589

CHAPTER 20
Term Structure Modeling and Valuation of Bonds and Bond Options 593
Basic Principles of Valuation of Debt Instruments 594
Yield-to-Maturity Measure 596
Premium Par Yield 598
Reinvestment of Cash Flow and Yield 598
The Term Structure of the Interest Rates and the Yield Curve 599
Limitations of Using the Yield to Value a Bond 602
Valuing a Bond as a Package of Cash Flows 603
Obtaining Spot Rates from the Treasury Yield Curve 603
Using Spot Rates to the Arbitrage-Free Value of a Bond 606
Contents

- **The Discount Function** 606
- **Forward Rates** 607
- **Swap Curve** 608

Classical Economic Theories About the Determinants of the Shape of the Term Structure
 - **Expectations Theories** 612
 - **Market Segmentation Theory** 618

Bond Valuation Formulas in Continuous Time 618

The Term Structure of Interest Rates in Continuous Time 623

- **Spot Rates: Continuous Case** 624
- **Forward Rates: Continuous Case** 625
- **Relationships for Bond and Option Valuation** 626
- **The Feynman-Kac Formula** 627
- **Multifactor Term Structure Model** 632
- **Arbitrage-Free Models versus Equilibrium Models** 634
- **Examples of One-Factor Term Structure Models** 635
- **Two-Factor Models** 638

Pricing of Interest-Rate Derivatives 638

- The Heath-Jarrow-Morton Model of the Term Structure 640
- The Brace-Gatarek-Musiela Model 643
- Discretization of Itô Processes 644

Summary 646

CHAPTER 21

Bond Portfolio Management 649

Management versus a Bond Market Index 649
 - **Tracking Error and Bond Portfolio Strategies** 651
 - **Risk Factors and Portfolio Management Strategies** 652
 - **Determinants of Tracking Error** 654
 - **Illustration of the Multifactor Risk Model** 654

Liability-Funding Strategies
 - **Cash Flow Matching** 664
 - **Portfolio Immunization** 667
 - **Scenario Optimization** 672
 - **Stochastic Programming** 673

Summary 677

CHAPTER 22

Credit Risk Modeling and Credit Default Swaps 679

- **Credit Default Swaps** 679
 - **Single-Name Credit Default Swaps** 680
 - **Basket Default Swaps** 681

Legal Documentation 683

Credit Risk Modeling: Structural Models
 - **The Black-Scholes-Merton Model** 685
 - **Geske Compound Option Model** 690
 - **Barrier Structural Models** 694

Advantages and Drawbacks of Structural Models 696

Credit Risk Modeling: Reduced Form Models 696
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Poisson Process</td>
<td>697</td>
</tr>
<tr>
<td>The Jarrow-Turnbull Model</td>
<td>698</td>
</tr>
<tr>
<td>Transition Matrix</td>
<td>703</td>
</tr>
<tr>
<td>The Duffie-Singleton Model</td>
<td>706</td>
</tr>
<tr>
<td>General Observations on Reduced Form Models</td>
<td>710</td>
</tr>
<tr>
<td>Pricing Single-Name Credit Default Swaps</td>
<td>710</td>
</tr>
<tr>
<td>General Framework</td>
<td>711</td>
</tr>
<tr>
<td>Survival Probability and Forward Default Probability: A Recap</td>
<td>712</td>
</tr>
<tr>
<td>Credit Default Swap Value</td>
<td>713</td>
</tr>
<tr>
<td>No Need For Stochastic Hazard Rate or Interest Rate</td>
<td>716</td>
</tr>
<tr>
<td>Delivery Option in Default Swaps</td>
<td>716</td>
</tr>
<tr>
<td>Default Swaps with Counterparty Risk</td>
<td>717</td>
</tr>
<tr>
<td>Valuing Basket Default Swaps</td>
<td>718</td>
</tr>
<tr>
<td>The Pricing Model</td>
<td>718</td>
</tr>
<tr>
<td>How to Model Correlated Default Processes</td>
<td>722</td>
</tr>
<tr>
<td>Summary</td>
<td>734</td>
</tr>
</tbody>
</table>

CHAPTER 23

Risk Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Completeness</td>
<td>738</td>
</tr>
<tr>
<td>The Mathematics of Market Completeness</td>
<td>739</td>
</tr>
<tr>
<td>The Economics of Market Completeness</td>
<td>742</td>
</tr>
<tr>
<td>Why Manage Risk?</td>
<td>744</td>
</tr>
<tr>
<td>Risk Models</td>
<td>745</td>
</tr>
<tr>
<td>Market Risk</td>
<td>745</td>
</tr>
<tr>
<td>Credit Risk</td>
<td>746</td>
</tr>
<tr>
<td>Operational Risk</td>
<td>746</td>
</tr>
<tr>
<td>Risk Measures</td>
<td>747</td>
</tr>
<tr>
<td>Risk Management in Asset and Portfolio Management</td>
<td>751</td>
</tr>
<tr>
<td>Factors Driving Risk Management</td>
<td>752</td>
</tr>
<tr>
<td>Risk Measurement in Practice</td>
<td>752</td>
</tr>
<tr>
<td>Getting Down to the Lowest Level</td>
<td>753</td>
</tr>
<tr>
<td>Regulatory Implications of Risk Measurement</td>
<td>754</td>
</tr>
<tr>
<td>Summary</td>
<td>755</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>757</td>
</tr>
</tbody>
</table>