Reaction Mechanisms in Organic Synthesis
Postgraduate Chemistry Series

A series designed to provide a broad understanding of selected growth areas of chemistry at postgraduate student and research level. Volumes concentrate on material in advance of a normal undergraduate text, although the relevant background to a subject is included. Key discoveries and trends in current research are highlighted, and volumes are extensively referenced and cross-referenced. Detailed and effective indexes are an important feature of the series. In some universities, the series will also serve as a valuable reference for final year honours students.

Editorial Board

Professor James Coxon (Editor-in-Chief), Department of Chemistry, University of Canterbury, New Zealand
Professor Pat Bailey, Department of Chemistry, University of Manchester, UK
Professor Les Field, School of Chemistry, University of New South Wales, Sydney, Australia
Professor Dr John Gladysz, Institut für Organische Chemie, Universität Erlangen-Nürnberg, Germany
Professor Philip Parsons, School of Chemistry, Physics and Environmental Science, University of Sussex, UK
Professor Peter Stang, Department of Chemistry, University of Utah, USA

Titles in the Series

Protecting Groups in Organic Synthesis
James R. Hanson

Organic Synthesis with Carbohydrates
Geert-Jan Boons and Karl J. Hale

Organic Synthesis Using Transition Metals
Roderick Bates

Stoichiometric Asymmetric Synthesis
Mark Rizzacasa and Michael Perkins

Catalysis in Asymmetric Synthesis (Second Edition)
Vittorio Caprio and Jonathan M.J. Williams

Photochemistry of Organic Compounds: From Concepts to Practice
Petr Klán and Jakob Wirz

Practical Biotransformations
Gideon Grogan
Reaction Mechanisms in Organic Synthesis

Rakesh Kumar Parashar
Reader, Chemistry Department, Kirori Mal College, University of Delhi, India
To Riya, Manya and Indu with love and to
my parents with immense respect
Contents

Foreword xi
Preface xiii
About the Author xv
Acknowledgements xv
Abbreviations xvii

1 **Synthetic Strategies** 1
1.1 An introduction to organic synthesis 1
1.2 Retrosynthetic analysis (disconnection approach) 2
1.3 Umpolung strategy 6
1.4 Atom economy 8
1.5 Selectivity 10
1.5.1 Chemoselectivity 11
1.5.2 Regioselectivity 12
1.5.3 Stereoselectivity 13
1.5.4 Asymmetric synthesis or chiral synthesis 16
1.6 Protecting groups 26
1.6.1 Common hydroxy protecting groups 27
1.6.2 Common diols protecting groups 36
1.6.3 Common amine protecting groups 38
1.6.4 Common carbonyl protecting groups 42
1.6.5 Common carboxylic acid protecting groups 45
1.6.6 Common arenesulfonic acid protecting groups 47
1.6.7 Common alkyne protecting groups 48
References 48

2 **Reactive Intermediates** 51
2.1 Carbocations 51
2.1.1 Structure and stability of carbocations 51
2.1.2 Generation of carbocations 53
2.1.3 Reactions of carbocations 54
2.1.4 Non-classical carbocations 60
2.2 Carbanions 63
2.2.1 Structure and stability of carbanions 63
2.2.2 Generation of carbanions 65
2.2.3 Reactions of carbanions 65
2.3 Free radicals 70
2.3.1 Structure and stability of free radicals 71
2.3.2 Generation of free radicals 72

2.3.3 Radical ions 76
2.3.4 Reactions of radicals 77

2.4 Carbenes 90
2.4.1 Structure and stability of carbenes 92
2.4.2 Generation of carbenes 93
2.4.3 Reactions of carbenes 95

2.5 Nitrenes 101
2.5.1 Structure and stability of nitrenes 101
2.5.2 Generation of nitrenes 101
2.5.3 Reactions of nitrenes 102

2.6 Benzynes 105
2.6.1 Generation of benzynes 105
2.6.2 Reactions of benzynes 106

References 109

3 Stabilized Carbanions, Enamines and Ylides 112
3.1 Stabilized carbanions 112
3.1.1 Reaction of stabilized carbanions (enolates) with alkyl halides (enolate alklylation) 114
3.1.2 Reaction of stabilized carbanions with carbonyl compounds 118
3.1.3 Conjugate addition of enolate to α,β-unsaturated carbonyl compounds 125
3.1.4 Reaction of enolates with iminium ions or imines 127

3.2 Enamines 130

3.3 Ylides 134
3.3.1 Formation of ylides 135
3.3.2 Reactions of ylides 137
3.3.3 Asymmetric ylide reactions 142

References 146

4 Carbon–Carbon Double Bond Forming Reactions 148
4.1 Introduction 148
4.2 Elimination reactions 148
4.2.1 β-Eliminations 148
4.2.2 Unimolecular syn-eliminations 153
4.2.3 Reactions from epoxides, thionocarbonates and episulfides 156

4.3 Alkenation (alkylidenation) of carbonyl compounds 157
4.3.1 Wittig reactions 158
4.3.2 Julia alkenation and modified Julia alkenation (Julia–Kocienski alkenation) 166
4.3.3 Peterson reaction 172
4.3.4 Use of titanium-based reagents 174
4.3.5 Use of Zinc (Zn) and Zirconium (Zr) reagents for the alkenation of ketones and aldehydes 182
4.3.6 Bamford–Stevens reaction and Shapiro reaction 184
4.3.7 Barton–Kellogg reaction 185
4.3.8 Catalytic aldehyde and ketone alkenation 187

4.4 Reduction of alkynes 188

References 189
5 Transition Metal-Mediated Carbon–Carbon Bond Forming Reactions 191
5.1 Carbon–carbon bond forming reactions catalyzed by transition metals 193
5.1.1 Heck reaction 193
5.1.2 Allylic substitutions 198
5.1.3 Cu- and Ni-catalyzed couplings 201
5.2 Transition metal-catalyzed coupling of organometallic reagents with organic halides and related electrophiles 203
5.2.1 Coupling of Grignard reagents 205
5.2.2 Coupling of organostannanes 208
5.2.3 Coupling of organoboranes 211
5.2.4 Coupling of organosilanes 213
5.2.5 Coupling of organocopper reagents 215
5.2.6 Coupling of organozinc compounds 216
References 222

6 Reduction 224
6.1 Reduction of carbon–carbon double bond 224
6.1.1 Catalytic hydrogenation 224
6.1.2 Hydrogen transfer reagents 228
6.2 Reduction of acetylenes 229
6.2.1 Catalytic hydrogenation 229
6.2.2 Dissolving metals 230
6.2.3 Metal hydrides 230
6.2.4 Hydroboration–protonation 231
6.3 Reduction of benzene and derivatives 231
6.3.1 Catalytic hydrogenation 231
6.3.2 Birch reduction 232
6.4 Reduction of carbonyl compounds 234
6.4.1 Catalytic hydrogenation 234
6.4.2 Metal hydrides 236
6.4.3 Metal and proton source 253
6.4.4 Hydrogen transfer reagents 255
6.5 Reduction of \(\alpha, \beta \)-unsaturated aldehydes and ketone 258
6.5.1 Catalytic hydrogenation 258
6.5.2 Hydride reagents 258
6.5.3 Dissolving metals 260
6.6 Reduction of nitro, N-oxides, oximes, azides, nitriles and nitroso compounds 261
6.6.1 Catalytic hydrogenation 261
6.6.2 Metal hydrides 261
6.6.3 Metal and proton source 263
6.6.4 Triphenylphosphine 264
6.7 Hydrogenolysis 265
References 266

7 Oxidation 268
7.1 Oxidation of alcohols 268
7.1.1 Chromium(VI) 268
7.1.2 Potassium permanganate 272
Contents

7.1.3 Manganese dioxide (MnO₂) 273
7.1.4 Dimethylsulfoxide-mediated oxidations 274
7.1.5 Dess–Martin periodinane (DMP) 278
7.1.6 Tetra-<i>n</i>-propylammonium perruthenate (TPAP) 279
7.1.7 Silver oxide and silver carbonate 280
7.1.8 Oppenauer oxidation 281
7.2 Oxidation of aldehydes and ketones 283
7.3 Oxidation of phenols 288
7.4 Epoxidation 291
7.5 Dihydroxylation 297
7.6 Aminohydroxylation 301
7.7 Oxidative cleavage of C–C double bonds 302
7.7.1 Ozonolysis 303
7.7.2 Glycol cleavage 304
7.8 Oxidation of anilines 306
7.9 Dehydrogenation 307
7.10 Allylic or benzylic oxidation 308
7.11 Oxidation of sulfides 308
7.12 Oxidation of aliphatic side chains attached to aromatic ring 309
References 311

8 Pericyclic Reactions 313
8.1 Important classes of pericyclic reactions 313
8.1.1 Cycloaddition reactions 313
8.1.2 Electroyclic reactions 314
8.1.3 Sigmatropic rearrangements 314
8.1.4 Ene reactions 314
8.1.5 Other classes of pericyclic reactions 314
8.2 Theoretical explanation of pericyclic reactions 316
8.2.1 MOs and their symmetry properties 316
8.2.2 Suprafacial and antarafacial 322
8.2.3 Conservation of orbital symmetry 324
8.3 Cycloaddition reactions 327
8.3.1 [4+2]-Cycloaddition reactions 328
8.3.2 [2+2]-Cycloaddition reactions 331
8.3.3 1,3-Dipolar additions 332
8.3.4 Theoretical explanation 332
8.4 Electroyclic reactions 340
8.4.1 Theoretical explanation 342
8.4.2 General rules for electrocyclic reactions 349
8.5 Sigmatropic rearrangements 349
8.5.1 Analysis of sigmatropic rearrangements 355
8.5.2 Carbon shift 358
8.6 Ene reactions 360
8.7 Selection rules 362
References 362

Index 364
Exciting new methods and reagents are being discovered and used everyday in the synthesis of organic molecules. Knowing the mechanism of these reactions is very important, without which it is almost impossible to carry out the synthesis of important molecules in the laboratory or in industry. Thus, the importance of organic reaction mechanisms continues to increase, and this book is a welcome addition to the available sources on the subject.

While teaching organic synthesis and practicing it in the laboratory, a need is often felt of a handy book combining organic synthesis and mechanisms of reactions employed in synthesis instead of large volumes or monograms on synthesis. There are not many such books covering these two very essential aspects of organic chemistry.

Writing a textbook for any level is always a challenge. However, Dr Parashar deserves praise for undertaking this project and interlinking these two areas of organic chemistry so well throughout the book.

The book is designed to provide fundamental aspects of organic chemistry in a flexible way rather than presenting a traditional approach. The mechanisms and stereochemical features of common reactions used in organic synthesis are discussed in a qualitative and quantitative manner. Specific examples are taken from the latest literature.

The contents of the book give a general impression about what is dealt with. The selection of topics has been done very carefully and judiciously. The material is condensed to a manageable text of 363 pages and presented in a clear and logical fashion over eight chapters. This is done by focusing purely on the basics of the subject without going through exhaustive detail or repetitive examples.

This book would be of immense help to students at the postgraduate level as well as to research workers because of its contents and the way those have been dealt with. I sincerely hope that the book will go a long way to satisfy the long-felt need of students and teachers who inspire the students to take up synthetic organic chemistry as their research topic and career.

I hope practitioners and professionals will be benefited from the experience of learning reaction mechanisms of important synthetic reactions.

I am happy to recommend this book as a self-guide for students and professionals.

Virinder S. Parmar, PhD, FRSC
Professor and Head, Department of Chemistry, and
Chairman of the Board of Research Studies
University of Delhi, India
An organic chemist is primarily concerned with (a) the synthesis of organic molecules of particular interest to the pharmaceutical and agrochemical industries and (b) the way these molecules interact in biological pathways.

Synthesis involves a careful selection of reactions; new reactions are being developed everyday. Knowing how structure affects a reaction, a rational sequence of transformations can be used to synthesize target molecules. An understanding of organic reaction mechanisms is essential without which it is impossible to plan organic synthesis. It is also required to extend one’s knowledge of different areas related to organic chemical reaction mechanisms. The vital importance of the organic synthesis processes is established by the fact that many Nobel laureates have been associated with this field.

Beginning with basic introductory course, this book covers all aspects of organic reaction mechanisms, expands on the foundation acquired in chemistry courses, and enables students and research workers to understand the mechanisms and then to plan syntheses. This book will help postgraduate students to write reasonable mechanisms for organic chemical transformations, which are arranged according to an ascending order of difficulty.

Established reactions are being subjected to both technical improvements and increasing number of applications. For example, intense efforts are made in industry and university laboratories to devise innovative ways to speed up reactions, to carry them out in a continuous fashion and to provide for separation of complex mixtures. For example, ultrasound can dramatically affect the rates of chemical reactions. Microwave-assisted protocols often result in high yields and time efficiency. Solid-phase synthesis allows for easy separation of the resulting products while providing for libraries of compounds to be made. Although these methods have been discussed in special monographs and review articles, there is no recent single book covering reactions (modern or newer) with latest procedural modifications and also simultaneously explaining reaction mechanism and covering stereospecificity and regiospecificity.

The book contains examples from recently published research work to illustrate the important steps involved in synthesis. The discussion is organized by the conditions under which the reaction is executed rather than by the types of mechanisms as is the case in most textbooks at the graduate level.

The author believes that students are well aware of the basic reaction pathways such as substitutions, additions, eliminations, aromatic substitutions, aliphatic nucleophilic substitutions and electrophilic substitutions. Students may follow undergraduate books on reaction mechanisms for basic knowledge of reactive intermediates and oxidation and reduction processes. Reaction Mechanisms in Organic Synthesis provides extensive coverage of various carbon–carbon bond forming reactions such as transition metal catalyzed reactions; use of stabilized carbanions, ylides and enamines for the carbon–carbon bond forming reactions; and advance level use of oxidation and reduction reagents in synthesis.