The Nutritional Trace Metals

Conor Reilly
BSc, BPhil, PhD, FAIFST
Emeritus Professor of Public Health
Queensland University of Technology, Brisbane, Australia

Visiting Professor of Nutrition
Oxford Brookes University, Oxford, UK
The Nutritional Trace Metals
The Nutritional Trace Metals

Conor Reilly
BSc, BPhil, PhD, FAIFST
Emeritus Professor of Public Health
Queensland University of Technology, Brisbane, Australia

Visiting Professor of Nutrition
Oxford Brookes University, Oxford, UK
Contents

Preface xiii

1 Introduction 1

1.1 The role of metals in life processes – a belated recognition 1

1.1.1 Bioinorganic chemistry 2

1.1.2 A brief review of the metals 3

1.1.2.1 What are the metals? 3

1.1.2.2 Chemical properties of the metals 4

1.1.2.3 Representative and transition metals 4

1.1.2.4 The biological functions of trace metals 6

1.2 The metal content of living systems 7

1.2.1 Metals in human tissue 8

1.2.2 Essential and non-essential elements 9

1.2.3 The essentiality of trace metals 9

1.3 Metals in food and diets 11

1.3.1 Variations in metal concentrations in foods 12

1.3.1.1 Chemical forms of metals in food 15

1.3.2 Determination of levels of trace metals in foods 16

1.3.3 How do metals get into foods? 17

1.3.3.1 Metals in soils 17

1.3.3.2 Soil as a source of trace metals in plants and in human diets 17

1.3.3.3 Effects of agricultural practices on soil metal content 18

1.3.3.4 Uptake of trace metals by plants from soil 18

1.3.3.5 Accumulator plants 19

1.3.4 Non-plant sources of trace metal nutrients in foods 19

1.3.5 Adventitious sources of trace metals in foods 20

1.3.6 Food fortification 20

1.3.7 Dietary supplements 21

1.3.8 Bioavailability of trace metal nutrients in foods 22

1.3.9 Estimating dietary intakes of trace metals 22

1.3.9.1 A hierarchal approach to estimating intakes 23

1.3.9.2 Other methods for assessing intakes 23

1.3.10 Recommended allowances, intakes and dietary reference values 24
1.3.10.1 The US RDAs of 1941 24
1.3.10.2 Estimated Safe and Adequate Daily Dietary Intakes 25
1.3.11 Modernising the RDAs 26
 1.3.11.1 The US Dietary Reference Intakes for the twenty-first century 27
 1.3.11.2 The UK’s Dietary Reference Values 28
 1.3.11.3 Australian and New Zealand Nutrient Reference Values 29
 1.3.11.4 Other nutrient intake recommendations 29

2 Iron 35
 2.1 Introduction 35
 2.2 Iron chemistry 36
 2.3 Iron in the body 37
 2.3.1 Haemoglobin 37
 2.3.2 Myoglobin 38
 2.3.3 Cytochromes 39
 2.3.3.1 Cytochrome P-450 enzymes 40
 2.3.4 Iron–sulphur proteins 40
 2.3.5 Other iron enzymes 40
 2.3.6 Iron-transporting proteins 41
 2.3.6.1 Transferrin 41
 2.3.6.2 Lactoferrin 41
 2.3.6.3 Ferritin 41
 2.3.6.4 Haemosiderin 42
 2.4 Iron absorption 42
 2.4.1 The luminal phase of iron absorption 43
 2.4.1.1 Inhibitors of iron absorption 43
 2.4.1.2 Effect of tannin in tea on iron absorption 44
 2.4.1.3 Dietary factors that enhance iron absorption 44
 2.4.1.4 Non-dietary factors that affect iron absorption 45
 2.4.2 Uptake of iron by the mucosal cell 45
 2.4.3 Handling of iron within the intestinal enterocyte 46
 2.4.4 Export of iron from the mucosal cells 46
 2.4.5 Regulation of iron absorption and transport 47
 2.5 Transport of iron in plasma 48
 2.5.1 Iron turnover in plasma 49
 2.6 Iron losses 49
 2.7 Iron status 49
 2.7.1 Methods for assessing iron status 50
 2.7.1.1 Measuring body iron stores 50
 2.7.1.2 Measuring functional iron 51
 2.7.2 Haemoglobin measurement 52
 2.7.3 Iron deficiency 52
 2.7.4 Iron deficiency anaemia (IDA) 52
 2.7.4.1 Consequences of IDA 53
 2.7.4.2 Anaemia of chronic disease (ACD) 54
 2.7.5 Iron overload 54
2.7.5.1 Haemochromatosis 54
2.7.5.2 Non-genetic iron overload 54
2.7.6 Iron and cellular oxidation 55
2.7.7 Iron, immunity and susceptibility to infection 56
 2.7.7.1 Iron and infection 57
2.7.8 Iron and cancer 58
2.7.9 Iron and coronary heart disease 58
2.8 Iron in the diet 59
 2.8.1 Iron in foods and beverages 59
2.8.2 Iron fortification of foods 60
 2.8.2.1 Bioavailability of iron added to foods 61
 2.8.2.2 Levels of iron used in food fortification 62
 2.8.2.3 Adventitious iron in food 63
2.8.3 Dietary intake of iron 63
2.9 Recommended intakes of iron 65
2.10 Strategies to combat iron deficiency 66
 2.10.1 Iron fortification of dietary staples 67
 2.10.2 Use of iron supplements 69
 2.10.3 The effect of changing dietary habits on iron status 70

3 Zinc 82
3.1 Introduction 82
3.2 Zinc distribution in the environment 83
3.3 Zinc chemistry 83
3.4 The biology of zinc 84
 3.4.1 Zinc enzymes 85
 3.4.2 Zinc finger proteins 85
3.5 Absorption and metabolism of zinc 86
 3.5.1 Chemical forms of zinc in food 86
 3.5.2 Promoters and inhibitors of zinc absorption 86
 3.5.3 Relation of zinc uptake to physiological state 87
3.6 Zinc homeostasis 87
 3.6.1 Zinc absorption in the gastrointestinal tract 88
 3.6.1.1 Transfer of zinc across the mucosal membrane 89
 3.6.1.2 Zinc transporters 89
 3.6.2 Regulation of zinc homeostasis at different levels of dietary intake 90
 3.6.3 Effect of changes in zinc intake on renal losses 91
 3.6.4 Other sources of zinc loss 91
3.7 Effects of changes in dietary zinc intakes on tissue levels 92
 3.7.1 Zinc in bone 92
 3.7.2 Zinc in plasma 93
3.8 Effects of zinc deficiency 93
 3.8.1 Severe zinc deficiency 93
 3.8.2 Mild zinc deficiency 93
 3.8.3 Zinc deficiency and growth in children 94
 3.8.3.1 Zinc deficiency and diarrhoea in children 94
3.8.3.2 Zinc deficiency and infection in children 94
3.8.3.3 Zinc deficiency and neurophysiological behaviour 94

3.9 Zinc and the immune system 95
3.9.1 Zinc and thymulin activity 95
3.9.2 Zinc and the epidermal barriers to infection 95
3.9.3 Zinc and apoptosis 96
3.9.4 Effects of high zinc intake on the immune system 96
3.9.5 Effect of zinc on immunity in the elderly 96

3.10 The antioxidant role of zinc 97
3.10.1 Zinc metallothionein 97
3.10.2 Nitric oxide and zinc release from MT 98

3.11 Zinc requirements 98
3.11.1 WHO estimates of zinc requirements 99
3.11.2 Recommended intakes for zinc in the US and the UK 100

3.12 High intakes of zinc 101

3.13 Assessment of zinc status 102
3.13.1 An index of suspicion of zinc deficiency 102
3.13.2 Assessment of zinc status using plasma and serum levels 102
3.13.3 Assessment of zinc status from dietary intake data 103
3.13.4 Use of zinc-dependent enzymes to assess zinc status 103
3.13.5 Other biomarkers for assessing zinc status 103

3.14 Dietary sources and bioavailability of zinc 104
3.14.1 Dietary intake of zinc in the UK 105

4 Copper 118
4.1 Introduction 118
4.2 Copper chemistry 118
4.3 The biology of copper 119
4.3.1 Copper proteins 119
4.3.1.1 Cytochrome-c oxidase 119
4.3.1.2 The ferroxidases 120
4.3.1.3 Copper/zinc superoxide dismutase 120
4.3.1.4 Amine oxidases 121
4.3.1.5 Tyrosinase 121
4.3.1.6 Other copper proteins 121

4.4 Dietary sources of copper 121

4.5 Copper absorption and metabolism 122
4.5.1 Effects on copper absorption of various food components 123
4.5.1.1 Effect of amino acids on copper absorption 123
4.5.1.2 Competition between copper and other metals for absorption 123
4.5.1.3 Effects of dietary carbohydrates and fibre on copper absorption 124
4.5.2 Copper absorption from human and cow’s milk 124
4.5.3 Transport of copper across the mucosal membrane 124
4.6 Distribution of copper in the body 125
4.7 Assessment of copper status 126
 4.7.1 Assessment of copper status using plasma copper and caeruloplasmin 126
 4.7.2 Copper enzyme activity 126
 4.7.3 Relation of immunity to copper status 127
 4.7.4 Responses to copper supplementation 127
4.8 Copper requirements 127
 4.8.1 Copper deficiency 127
 4.8.1.1 Copper deficiency and heart disease 128
 4.8.2 Recommended and safe intakes of copper 128
 4.8.2.1 Upper limits of intake 129
 4.8.3 Dietary intakes of copper 130

5 Selenium 135
 5.1 Introduction 135
 5.2 Selenium chemistry 136
 5.2.1 Selenium compounds 136
 5.2.1.1 Organo-selenium products 137
 5.3 Production of selenium 137
 5.3.1 Uses of selenium 138
 5.4 Sources and distribution of selenium in the environment 138
 5.4.1 Selenium in soil and water 139
 5.4.2 Availability of selenium in different soils 139
 5.4.3 Selenium in surface waters 139
 5.5 Selenium in foods and beverages 140
 5.5.1 Variations in selenium levels in foods 140
 5.5.2 Sources of dietary selenium 141
 5.5.2.1 Brazil nuts 141
 5.5.3 Dietary intakes of selenium 142
 5.5.3.1 Changes in dietary intakes of selenium: Finland and New Zealand 144
 5.6 Absorption of selenium from ingested foods 145
 5.6.1 Retention of absorbed selenium 146
 5.6.1.1 The nutritional significance of selenomethionine 146
 5.6.2 Excretion of selenium 146
 5.6.3 Selenium distribution in the human body 146
 5.6.4 Selenium levels in blood 147
 5.6.4.1 Selenium in whole blood 147
 5.6.4.2 Selenium in serum and plasma 148
 5.6.4.3 Selenium levels in other blood fractions 149
 5.7 Biological roles of selenium 149
 5.7.1 Selenium-responsive conditions in farm animals 149
 5.7.2 Functional selenoproteins in humans 150
 5.7.2.1 Glutathione peroxidases (GPXs) 150
 5.7.2.2 Iodothyronine deiodinase (ID) 151
7.5 Dietary intake of manganese
7.6 Absorption and metabolism of manganese
 7.6.1 Metabolic functions of manganese
 7.6.2 Manganese deficiency
 7.6.3 Manganese toxicity
7.7 Assessment of manganese status and estimation of dietary requirements
 7.7.1 Manganese dietary requirements

8 Molybdenum
 8.1 Introduction
 8.2 Distribution and production of molybdenum
 8.3 Chemical and physical properties of molybdenum
 8.4 Molybdenum in food and beverages
 8.5 Dietary intakes of molybdenum
 8.6 Absorption and metabolism of molybdenum
 8.6.1 Molybdenum deficiency
 8.6.2 Molybdenum toxicity
 8.6.2.1 Toxicity from molybdenum in dietary supplements
 8.7 Molybdenum requirements

9 Nickel, boron, vanadium, cobalt and other trace metal nutrients
 9.1 Introduction
 9.2 Nickel
 9.2.1 Chemical and physical properties of nickel
 9.2.2 Nickel in food and beverages
 9.2.3 Dietary intake of nickel
 9.2.3.1 Intake of nickel from dietary supplements
 9.2.4 Absorption and metabolism of nickel
 9.2.5 Dietary requirements for nickel
 9.3 Boron
 9.3.1 Chemical and physical properties of boron
 9.3.2 Uses of boron
 9.3.3 Boron in food and beverages
 9.3.3.1 Dietary intake of boron
 9.3.3.2 Boron intakes by vegetarians
 9.3.3.3 Boron intakes from supplements
 9.3.4 Absorption and metabolism of boron
 9.3.5 Boron: an essential nutrient?
 9.3.6 An acceptable daily intake for boron
 9.4 Vanadium
 9.4.1 Chemical and physical properties of vanadium
 9.4.2 Production and uses of vanadium
 9.4.3 Vanadium in food and beverages
 9.4.3.1 Dietary intakes of vanadium
 9.4.3.2 Intake of vanadium from dietary supplements
 9.4.4 Absorption and metabolism of vanadium
Preface

This book is intended to cover a somewhat neglected area of human metabolism and nutrition. Historically, the interest of writers of nutrition textbooks has mainly been in the role of organic substances in human metabolism. The inorganic nutrients, lumped together as ‘minerals’, have usually been given scant attention. Though the situation has changed in recent years, the nutritionally significant inorganic components of food, especially those that occur in very small amounts in the diet, still receive only a limited share of the space in textbooks. They are no better treated in many university nutrition courses. Yet, there are few, if any, functions of tissues and cells of the human body that are not dependent on the presence of these elements. Without an adequate supply of nutritional trace metals, human life would cease.

This book is intended to draw attention to the roles played by trace metals in human metabolism. Its structure and content are largely based on the approach I have adopted, during more than three decades of teaching nutrition to a wide range of undergraduate and postgraduate students, in dietetics, food science, medicine, pharmacology and related fields of study. In addition to providing basic information on the nature and functions of the trace metals, it draws on reports from specialist literature to highlight current thinking about their significance to human health. It is not, strictly speaking, a textbook, though it could well serve in that capacity for a dedicated course on trace elements. It is hoped that Nutritional Trace Metals will be of value as a reference work, as well as recommended background reading for undergraduate and postgraduate students of human nutrition. I have adopted a style of writing that I hope will make it easy to read, and not demand more than a reasonable undergraduate level of scientific knowledge to follow its reasoning. Where necessary, explanations of chemical and physiological matters that might not be familiar to some readers, but can be omitted by others who have a stronger scientific foundation, are provided to compensate for inadequacies in background knowledge. My hope is that those who use this book will gain a level of knowledge of the nutritional trace metals that will enrich their understanding of a fascinating area of human nutrition, at a level that will meet their professional needs, satisfy their curiosity and at the same time encourage them to expand their knowledge by following up at least some of the many references provided.

Nutritional Trace Metals is aimed at a wide audience. It should be particularly useful for undergraduates in dietetics and nutrition courses but also, it is hoped, be of value to medical, pharmaceutical and other health professionals, including alternative health practitioners. It could also serve as a reference book for food scientists and technologists, as well as for administrators and others in the food industry, who need to know more about