Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime
Dairy Science and Technology Consultant
Ayr, UK

WILEY-BLACKWELL
A John Wiley & Sons, Ltd., Publication
Dairy Powders and Concentrated Products
The Society of Dairy Technology (SDT) has joined with Wiley-Blackwell to produce a series of technical dairy-related handbooks providing an invaluable resource for all those involved in the dairy industry, from practitioners to technologists, working in both traditional and modern large-scale dairy operations.

For information regarding the SDT, please contact Maurice Walton, Executive Director, Society of Dairy Technology, P.O. Box 12, Appleby in Westmorland, CA16 6YJ, UK. email: execdirector@sdt.org

Other volumes in the Society of Dairy Technology book series:

Probiotic Dairy Products (ISBN 978 1 4051 2124 8)
Fermented Milks (ISBN 978 0 6320 6458 8)
Brined Cheeses (ISBN 978 1 4051 2460 7)
Structure of Dairy Products (ISBN 978 1 4051 2975 6)
Cleaning-in-Place (ISBN 978 1 4051 5503 8)
Milk Processing and Quality Management (ISBN 978 1 4051 4530 5)
Dairy Fats and Related Products (ISBN 978 1 4051 5090 3)
Dairy Powders and Concentrated Products

Edited by

A. Y. Tamime
Dairy Science and Technology Consultant
Ayr, UK
Contents

Preface to the Technical Series xv
Preface xvii
Contributors xxi

1 Chemistry of Milk – Role of Constituents in Evaporation and Drying 1
H.C. DEETH AND J. HARTANTO

1.1 Introduction 1
1.2 Chemical components of liquid, concentrated and dried milk products 1
 1.2.1 Protein 1
 1.2.2 Fat 6
 1.2.3 Carbohydrate 8
 1.2.4 Minerals 9
 1.2.5 Water 11
 1.2.6 Air 11
1.3 Surface composition of powders 12
1.4 Quality issues 14
 1.4.1 Heat stability 14
 1.4.2 Fouling 18
 1.4.3 Age thickening 19
 1.4.4 Maillard reactions 19
 1.4.5 Oxidation 20
1.5 Conclusions 22
References 22

2 Current Legislation on Concentrated and Dried Milk Products 28
M. HICKEY

2.1 Introduction 28
2.2 European Union legislation 31
 2.2.1 Access to EU legislation 31
 2.2.2 Vertical—legislation on concentrated and dried milk products 31
 2.2.3 Horizontal—hygiene and food safety requirements 41
 2.2.4 Horizontal—food additives legislation 45
 2.2.5 Horizontal—labelling requirements for foods 52
 2.2.6 Horizontal—packaging legislation 53
vi Contents

2.3 United Kingdom legislation 54
 2.3.1 Legislative basis 54
 2.3.2 Background 54
 2.3.3 Present legislation on composition 56
 2.3.4 Present legislation on hygiene 58
 2.3.5 The Dairy UK Code of Practice for HTST pasteurisation 58

2.4 Irish legislation 59
 2.4.1 Introduction 59
 2.4.2 Present legislation on hygiene 60
 2.4.3 Present legislation on specific products 60

2.5 United States legislation 61
 2.5.1 Introduction and background to US legislation 61
 2.5.2 The ‘Code of Federal Regulations’ 63
 2.5.3 Hygiene requirements for milk and certain milk products 64
 2.5.4 US standards of identity and labelling 66
 2.5.5 The USDA specifications and grading schemes for certain milk products 71
 2.5.6 Food additives in US legislation 72

2.6 Legislation in Australia and New Zealand 73
 2.6.1 Introduction 73
 2.6.2 The ‘Joint Food Standards Code’ 73
 2.6.3 New Zealand-specific legislation 74

2.7 The international perspective–Codex Alimentarius 75
 2.7.1 What is Codex Alimentarius? 75
 2.7.2 Codex Alimentarius Commission membership and structure 76
 2.7.3 Codex Alimentarius standards 76
 2.7.4 Codex Alimentarius–general standards 79
 2.7.5 Codex Alimentarius standards for concentrated and dried milks 84

2.8 Private standards and specifications 87
2.9 Conclusions and possible future developments 88
References 88

3 Technology of Evaporators, Membrane Processing and Dryers 99
M. CARIĆ, J.C. AKKERMAN, S. MILANOVIĆ, S.E. KENTISH AND A.Y. TAMIME

3.1 Introduction 99
3.2 Evaporators 100
 3.2.1 Principles of evaporation 100
 3.2.2 Evaporation techniques and systems 101
 3.2.3 Plant design of evaporator configuration 104
 3.2.4 Heat economy in evaporator installation 104
 3.2.5 Cleaning of evaporators 105
 3.2.6 Evaporation versus membrane filtration 106
3.3 Membrane filtration technology 108
 3.3.1 Principles of membrane filtration 108
 3.3.2 Membrane filtration techniques and systems 112
 3.3.3 Membrane filtration configurations 114
 3.3.4 Heat economy in membrane filtration 115
 3.3.5 Application of membrane filtration in the dairy industry 115
 3.3.6 Cleaning of membrane filtration systems 116
3.4 Spray drying technology 123
 3.4.1 Principles of spray drying 123
 3.4.2 Spray drying techniques and systems 127
 3.4.3 Plant design of spray drying configuration 130
 3.4.4 Heat economy of spray drying 132
 3.4.5 Cleaning of dryers 133
3.5 Conclusions 142

References 143

4 Production of Evaporated Milk, Sweetened Condensed Milk and ‘Dulce de Leche’ 149
M.N. OLIVEIRA, A.L.B. PENNA AND H. GARCIA NEVAREZ

4.1 Background 149
4.2 Evaporated milk
 4.2.1 Introduction 151
 4.2.2 Evaporated milk production 154
 4.2.3 Product properties 154
4.3 Sweetened condensed milk
 4.3.1 Introduction 156
 4.3.2 Production stages 156
4.4 ‘Dulce de leche’ 158
 4.4.1 Background 158
 4.4.2 ‘Dulce de leche’ production 160
 4.4.3 Product properties 164
 4.4.4 Rheological parameters 165
 4.4.5 Results of a research on ‘dulce de leche’ using the UF process 166
4.5 Conclusions 176
References 177

5 Dried Milk Products 180
M. SKANDERBY, V. WESTERGAARD, A. PARTRIDGE AND D.D. MUIR

5.1 Introduction 180
5.2 Definitions
 5.2.1 Composition 180
 5.2.2 Heat classification 182
 5.2.3 Dispersion properties 182
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Microbial quality</td>
<td>182</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Raw milk</td>
<td>182</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Effects of milk processing</td>
<td>186</td>
</tr>
<tr>
<td>5.4</td>
<td>Functionality and certain technical aspects</td>
<td>189</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Heat treatment</td>
<td>189</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Whey protein denaturation</td>
<td>191</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Agglomeration and instantisation</td>
<td>194</td>
</tr>
<tr>
<td>5.5</td>
<td>Specific processes</td>
<td>203</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Ordinary milk powders</td>
<td>203</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Instant milk powders</td>
<td>204</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Other types of milk powders</td>
<td>209</td>
</tr>
<tr>
<td>5.6</td>
<td>Quality assessment</td>
<td>212</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Introduction</td>
<td>212</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Milk</td>
<td>212</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Concentrate</td>
<td>215</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Powder</td>
<td>216</td>
</tr>
<tr>
<td>5.7</td>
<td>Conclusions</td>
<td>233</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>233</td>
</tr>
</tbody>
</table>

6 Casein and Related Products | 235 |
| H.S. ROLLEMA AND D.D. MUIR |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>235</td>
</tr>
<tr>
<td>6.2</td>
<td>Products—definitions and structure</td>
<td>236</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Acid casein</td>
<td>236</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Caseinates</td>
<td>236</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Phosphocasein</td>
<td>237</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Rennet casein</td>
<td>237</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Co-precipitate</td>
<td>238</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Milk protein concentrates and isolates</td>
<td>238</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Isolated and enriched casein fractions</td>
<td>238</td>
</tr>
<tr>
<td>6.2.8</td>
<td>Casein fragments</td>
<td>239</td>
</tr>
<tr>
<td>6.3</td>
<td>Methods of manufacture</td>
<td>240</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Introduction</td>
<td>240</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Acid casein—conventional treatment</td>
<td>241</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Rennet casein</td>
<td>243</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Caseinate</td>
<td>243</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Co-precipitate</td>
<td>244</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Acid casein—supercritical fluid processing</td>
<td>244</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Fractionation of casein</td>
<td>245</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Total milk protein</td>
<td>247</td>
</tr>
<tr>
<td>6.3.9</td>
<td>Casein-derived peptides</td>
<td>247</td>
</tr>
<tr>
<td>6.4</td>
<td>Functionality</td>
<td>249</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Solubility</td>
<td>249</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Heat and alcohol stability</td>
<td>249</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Viscosity</td>
<td>249</td>
</tr>
</tbody>
</table>
6.4.4 Formation of protein-stabilised emulsions 249
6.4.5 Functionality of peptides derived from casein 250
6.5 Quality control 250
References 252

7 Dried Whey, Whey Proteins, Lactose and Lactose Derivative Products 255
P. JELEN

7.1 Introduction 255
7.2 Types and composition of raw whey and main whey-based powders 255
 7.2.1 Standard and modified whey powders 256
 7.2.2 Whey protein 256
 7.2.3 Lactose and modified lactose products 257
 7.2.4 Other whey-based powdered products 259
7.3 Unit operations in the production of concentrated and dried whey and whey-based products 259
7.4 Technological complexities in the production and storage of whey-based products 261
 7.4.1 Heat sensitivity of whey protein 261
 7.4.2 Low solubility and hygroscopicity of lactose 262
 7.4.3 Content of lactic acid 262
 7.4.4 Propensity for non-enzymatic Maillard browning reaction 263
 7.4.5 Foam formation and its potential detrimental effects during drying 263
 7.4.6 Free moisture in lactose powders 263
7.5 Modified whey-based products and their uses 264
7.6 Future trends 264
7.7 Sources of further information 265
References 266

8 Specialised and Novel Powders 268
P. HAVEA, A.J. BALDWIN AND A.J. CARR

8.1 Introduction 268
8.2 Principles 268
 8.2.1 Moisture content 268
 8.2.2 Carbohydrate content 269
 8.2.3 High-fat content 269
 8.2.4 Oxidation 269
 8.2.5 Processing control 270
 8.2.6 Particle solubility 270
8.3 Coffee whitener powders 270
 8.3.1 Chemical composition 270
 8.3.2 Manufacturing process 271
 8.3.3 Functional properties 271
 8.3.4 Recent developments 272
8.4 Novel whey products
8.4.1 Whey protein in nutraceutical applications 273
8.4.2 Heat-denatured whey protein 274
8.4.3 Cold gelling WPCs 276
8.4.4 Co-precipitation of whey protein with casein 277
8.5 Milk mineral 278
8.6 Cheese powder 280
8.7 Hydrolysates 280
8.8 Cream powders 284
8.8.1 Why dried cream powders? 284
8.8.2 Emulsion stability 284
8.8.3 Processing of cream powders 285
8.8.4 Physicochemical properties of dairy cream powders 286
8.9 Concluding remarks 287
References 288

9 Infant Formulae – Powders and Liquids 294
D.-H. MONTAGNE, P. VAN DAEL, M. SKANDERBY
AND W. HUGELSHOFER

9.1 Introduction 294
9.2 Historical background 294
9.3 Definition and classification of infant formula 296
9.4 An overview of the world market of infant formulae 297
9.4.1 Annual production figures 297
9.4.2 Worldwide manufacturers of infant formulae 299
9.5 Regulations governing infant formulae 301
9.5.1 General background 301
9.5.2 Cultural and religious aspects 301
9.5.3 Labelling 302
9.5.4 Procedures for placing infant food product on the market 303
9.6 Essential composition 303
9.6.1 Introduction 303
9.6.2 Proteins 305
9.6.3 Lipids 309
9.6.4 Carbohydrates 309
9.6.5 Minerals 310
9.6.6 Vitamins 311
9.7 Food safety 311
9.7.1 Food additives 311
9.7.2 Hygiene and microbiological standards 311
9.8 Raw materials/ingredients 312
9.8.1 General aspects 312
9.8.2 Milk 312
9.8.3 Oils 313
9.8.4 Carbohydrates 313
9.9 Manufacture of dried infant formulae (powders)
 9.9.1 Introduction 313
 9.9.2 The ‘wet mix’ processing line 314
 9.9.3 Preparation of the mix 316
 9.9.4 Evaporation 316
 9.9.5 Spray drying 317
 9.9.6 Hygiene and production time between CIP cleaning 318
 9.9.7 Structure of the powder 318
 9.9.8 Drying parameters 319
 9.9.9 Finished powder conveying system 320
 9.9.10 Microbiological examination 320

9.10 Manufacture of liquid infant formulae (Ready-To-Feed and concentrates)
 9.10.1 Dissolving of ingredients 321
 9.10.2 First stage of standardisation 321
 9.10.3 Oils and fat addition 321
 9.10.4 First heat treatment and fat emulsification 323
 9.10.5 Second stage of standardisation 323
 9.10.6 Final conditioning 323
 9.10.7 Retort sterilisation 323
 9.10.8 UHT sterilisation and aseptic processing 324
 9.10.9 Intermediate aseptic storage 325
 9.10.10 Aseptic filling machines and packaging materials 325
 9.10.11 Microbiological examination 326

9.11 Conclusion 327

References 328

10 Process Control in Evaporation and Drying 332
C.G. BLOORE AND D.J. O’CALLAGHAN

 10.1 Background 332
 10.2 Control technology 333
 10.3 Measurement technology 334
 10.4 Actuator technology 335
 10.5 Communication technology 335
 10.6 Control philosophies 336
 10.7 Process dynamics 337
 10.8 Evaporator control 337
 10.8.1 Feed flow rate 337
 10.8.2 Pre-heat temperature 337
 10.8.3 Energy input 337
 10.8.4 Condenser water flow rate 338
 10.8.5 Level of total solids in the concentrate 338
 10.8.6 Modelling approaches for evaporator control 340
 10.8.7 Control of evaporator cleaning systems 341
10.9 Spray dryer control

10.9.1 Controlling the evaporative demand 341
10.9.2 Controlling the energy input 342
10.9.3 Controlling powder moisture content 342
10.9.4 Concentrate flow rate in disc atomising dryers 342
10.9.5 Concentrate flow rate in nozzle atomising dryers 343
10.9.6 Inlet air flow rate 343
10.9.7 Air-flow stability in spray dryers 343
10.9.8 Inlet air temperature 344
10.9.9 Chamber pressure 344
10.9.10 Outlet temperature in dryers without static fluid beds 344
10.9.11 Outlet temperature in spray dryers with integrated fluid beds 345
10.9.12 ‘Dummy’ outlet temperature 346
10.9.13 Moisture control 347
10.9.14 A model-predictive approach to the control of a spray dryer 347
10.9.15 The influence of the protein content of the powder 347
10.9.16 Cleaning system control in spray drying 348

10.10 Conclusion 349

References 349

11 Hazards in Drying 351

C.G. BLOORE AND D.J. O’CALLAGHAN

11.1 Background 351

11.2 Combustion 351

11.2.1 Smouldering combustion 352
11.2.2 Flaming combustion 352
11.2.3 Deflagrations 352
11.2.4 Detonations 353
11.2.5 Secondary explosions 353

11.3 Dust characteristics 353

11.3.1 Combustibility/explosibility 353
11.3.2 Upper and lower explosible limits 353
11.3.3 Minimum ignition temperature 354
11.3.4 Minimum ignition energy 354
11.3.5 Maximum explosion pressure and the rate of pressure rise 355
11.3.6 Particle size 356
11.3.7 Moisture content 356

11.4 Ignition sources 356

11.4.1 Flames 356
11.4.2 Hot surfaces 357
11.4.3 Mechanical friction 358
11.4.4 Impact sparks 358
11.4.5 Electrical sparks 359
11.4.6 Electrostatic discharge sparks 359
11.4.7 Hot work 359
11.4.8 Self-ignition 360
11.5 Hazards of dust explosions 362
11.6 Fire detection 362
 11.6.1 Fast-acting temperature sensors 362
 11.6.2 Infra-red optical detectors 362
 11.6.3 Carbon monoxide detectors 363
 11.6.4 Pressure sensors 363
 11.6.5 Operator observation 364
11.7 Explosion suppression 364
 11.7.1 Dry powder suppression 364
 11.7.2 Chlorinated fluorocarbon compounds 365
 11.7.3 Pressurised hot water 365
11.8 Explosion venting 365
 11.8.1 Venting principles 365
 11.8.2 Vent ducts 366
 11.8.3 Vent doors and panels 366
11.9 Containment 367
11.10 Isolation 367
11.11 Inerting 367
11.12 Fire fighting 367
11.13 Conclusion 368
References 368

Index 370