Whey Processing, Functionality and Health Benefits

Whey Processing, Functionality and Health Benefits provides a review of the current state of the science related to novel processes, functionality, and health benefit implications and documents the biological role of whey protein in selected areas that include muscle metabolism after exercise, muscle and body composition in the elderly, weight management, food intake regulation, and maintenance of bone mass. The topics addressed and the subject experts represent the best science knowledge base in these areas. In some of these areas, the state of the art and science are compelling, and emerging data are confirming and solidifying the human knowledge base. Collating the understanding and knowledge of the metabolic roles of whey protein and developing the clinical datasets that demonstrate efficacy for improving human health will speed up new product innovations and sustainable opportunities for the food industry as evidenced by the processing and functionality research conducted so far.

Topics covered in this volume include:
- Whey utilization history and progress in process technology
- Fractionation and separation with health implications
- Whey emulsions and stability in acidic environments
- Current applications in films, coatings, and gels
- Texturized whey in snacks, meat analogs, and candies
- Nanoparticles in hydrogels for delivery of bioactive components
- Whey protein role in human health

Health and wellness, processing, and functionality are clearly areas of continuing research and offer growth opportunity for the food industry. The benefits from such concentrated body of knowledge will be new ingredients and innovative products that improve overall wellbeing. Whey Processing, Functionality and Health Benefits provides food scientists and manufacturers insight into the health implications of whey protein science. Ultimately, the consumer will benefit from better formulated, healthier products.

Editors

Charles I. Onwulata, Ph.D., is a Research Food Technologist with the USDA-Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA. He serves as a Lead Scientist in the Dairy Processing and Products Research Unit and heads the Center of Excellence in Extrusion and Polymer Rheology (CEEPR).

Peter J. Huth, Ph.D., is a consultant in nutrition research and scientific affairs, PJH Nutritional Sciences, Chicago, IL. Previously, he served as Director, Nutrition Research and Scientific Affairs for Dairy Management Inc., Rosemont, IL and as Research Principal, Nutrition Research, for Kraft Foods, Inc., Glenview, IL.
Whey Processing, Functionality and Health Benefits
The *IFT Press* series reflects the mission of the Institute of Food Technologists—advancing the science and technology of food through the exchange of knowledge. Developed in partnership with Wiley-Blackwell, *IFT Press* books serve as leading edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide.

IFT Book Communications Committee

Joseph H. Hotchkiss
Barry G. Swanson
Ruth M. Patrick
Terri D. Boylston
Syed S. H. Rizvi
William C. Haines
Mark Barrett
Sajida Plauche
Karen Banasiak

IFT Press Editorial Advisory Board

Malcolm C. Bourne
Fergus M. Clydesdale
Dietrich Knorr
Theodore P. Labuza
Thomas J. Montville
S. Suzanne Nielsen
Martin R. Okos
Michael W. Pariza
Barbara J. Petersen
David S. Reid
Sam Saguy
Herbert Stone
Kenneth R. Swartzel
Whey Processing, Functionality and Health Benefits

EDITORS
Charles I. Onwulata • Peter J. Huth
Titles in the *IFT Press* series

- *Accelerating New Food Product Design and Development* (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- *Advances in Dairy Ingredients* (Geoffrey W. Smithers and Mary Ann Augustin)
- *Biofilms in the Food Environment* (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- *Calorimetry and Food Process Design* (Gönül Kaletunc)
- *Food Ingredients for the Global Market* (Yao-Wen Huang and Claire L. Kruger)
- *Food Irradiation Research and Technology* (Christopher H. Sommers and Xueting Fan)
- *Food Laws, Regulations and Labeling* (Joseph D. Eifert)
- *Food Risk and Crisis Communication* (Anthony O. Flood and Christine M. Bruhn)
- *Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control* (Sadhana Ravishankar and Vijay K. Juneja)
- *Functional Proteins and Peptides* (Yoshinori Mine, Richard K. Owusu-Apenten, and Bo Jiang)
- *High Pressure Processing of Foods* (Christopher J. Doona and Florence E. Feeherry)
- *Hydrocolloids in Food Processing* (Thomas R. Laaman)
- *Microbial Safety of Fresh Produce: Challenges, Perspectives and Strategies* (Xueting Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- *Microbiology and Technology of Fermented Foods* (Robert W. Hutkins)
- *Multivariate and Probabilistic Analyses of Sensory Science Problems* (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- *Nondestructive Testing of Food Quality* (Joseph Irudayaraj and Christoph Reh)
- *Nanoscience and Nanotechnology in Food Systems* (Hongda Chen)
- *Nonthermal Processing Technologies for Food* (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, and VM. Balasubramaniam, Editors; C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan, Associate Editors)
- *Nutraceuticals, Glycemic Health and Type 2 Diabetes* (Vijai K. Pasupuleti and James W. Anderson)
- *Packaging for Nonthermal Processing of Food* (J.H. Han)
- *Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions* (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- *Processing and Nutrition of Fats and Oils* (Ernesto M. Hernandez, Monjur Hossen, and Afaf Kamal-Eldin)
- *Regulation of Functional Foods and Nutraceuticals: A Global Perspective* (Clare M. Hasler)
- *Sensory and Consumer Research in Food Product Design and Development* (Howard R. Moskowitz, Jacqueline H. Beckley, and Anna V.A. Resurreccion)
- *Sustainability in the Food Industry* (Cheryl J. Baldwin)
- *Thermal Processing of Foods: Control and Automation* (K.P. Sandeep)
- *Whey Processing, Functionality and Health Benefits* (Charles I. Onwulata and Peter J. Huth)
<table>
<thead>
<tr>
<th>Contributors</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
</tbody>
</table>

Chapter 1. Whey Protein Production and Utilization: A Brief History
Michael H. Tunick
1

Chapter 2. Whey Protein Fractionation
Laetitia M. Bonnaillie and Peggy M. Tomasula
15

Chapter 3. Separation of β-Lactoglobulin from Whey: Its Physico-Chemical Properties and Potential Uses
Raj Mehra and Brendan T. O’Kennedy
39

Chapter 4. Whey Protein-Stabilized Emulsions
David Julian McClements
63

Chapter 5. Whey Proteins: Functionality and Foaming under Acidic Conditions
Stephanie T. Sullivan, Saad A. Khan, and Ahmed S. Eissa
99

Chapter 6. Whey Protein Films and Coatings
Kirsten Dangaran and John M. Krochta
133

Chapter 7. Whey Texturization for Snacks
Lester O. Pordesimo and Charles I. Onwulata
169
Contents

Chapter 8. Whey Protein-Based Meat Analogs 185
Marie K. Walsh and Charles E. Carpenter

Chapter 9. Whey Inclusions 201
K.J. Burrington

Chapter 10. Functional Foods Containing Whey Proteins 213
B. Faryabi, S. Mohr, Charles I. Onwulata, and Steven J. Mulvaney

Chapter 11. Whey Protein Hydrogels and Nanoparticles for Encapsulation and Controlled Delivery of Bioactive Compounds 227
Sundaram Gunasekaran

Chapter 12. Whey Proteins and Peptides in Human Health 285
P.E. Morris and R.J. FitzGerald

Chapter 13. Current and Emerging Role of Whey Protein on Muscle Accretion 385
Peter J. Huth, Tia M. Rains, Yifan Yang, and Stuart M. Phillips

Charles I. Onwulata

Appendix 391
Index 393
Contributors

Laetitia M. Bonnaillie (2)
Dairy Processing and Products Research Unit, USDA-ARS-ERRC, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA

K.J. Burrington (9)
Center for Dairy Research, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI 53706, USA

Charles E. Carpenter (8)
Department of Nutrition and Food Sciences, Center for Microbial Detection and Physiology, Utah State University, 8700 Old Main Hill, NFS 318, Logan, UT 84322, USA

Kirsten Dangaran (6)
Dairy Processing and Products Research Unit, USDA-ARS-ERRC, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA

Ahmed S. Eissa (5)
Department of Chemical Engineering, Cairo University, Cairo, Egypt

B. Faryabi (10)
Cornell University, 105 Stocking Hall, Ithaca, NY 14853, USA

R.J. FitzGerald (12)
Department of Life Sciences, University of Limerick, Castletroy, Limerick, Ireland
Contributors

Sundaram Gunasekaran (11)
Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Peter J. Huth (13)
Nutrition Research and Scientific Affairs, PJH Nutritional Sciences, Chicago, IL

Saad A. Khan (5)
Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA

John M. Krochta (6)
Department of Food Science, Packaging and Biopolymer Film Laboratory, University of California-Davis, Davis, CA 95616, USA

David Julian McClements (4)
Department of Food Science, Chenoweth Laboratory, University of Massachusetts, Rm 238, Amherst, MA 01003, USA

Raj Mehra (3)
Moorepark Food Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

S. Mohr (10)
Cornell University, 105 Stocking Hall, Ithaca, NY 14853, USA

P.E. Morris (12)
Department of Life Sciences, University of Limerick, Castletroy, Limerick, Ireland

Steven J. Mulvaney (10)
Cornell University, 105 Stocking Hall, Ithaca, NY 14853, USA

Brendan T. O’Kennedy (3)
Moorepark Food Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
Contributors

Charles I. Onwulata (7, 10, 14)
Dairy Processing and Products Research Unit, USDA-ARS-ERRC, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA

Stuart M. Phillips (13)
Department of Kinesiology—Exercise Metabolism Research Group—IWC 219B, McMaster University, Hamilton, ON L8S 4K1, Canada

Lester O. Pordesimo (7)
Department of Agricultural and Biological sciences, Mississippi State University, Mississippi State, MS 39762, USA

Tia M. Rains (13)
Provident Clinical Research and Consulting, 489 Taft Avenue, Glen Ellyn, IL 60137, USA

Stephanie T. Sullivan (5)
Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA

Peggy M. Tomasula (2)
Dairy Processing and Products Research Unit, USDA-ARS-ERRC, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA

Michael H. Tunick (1)
USDA-ARS-ERRC, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA

Marie K. Walsh (8)
Department of Nutrition and Food Sciences, Center for Microbial Detection and Physiology, Utah State University, 8700 Old Main Hill, NFS 318, Logan, UT 84322, USA

Yifan Yang (13)
Department of Kinesiology—Exercise Metabolism Research Group—IWC 219B, McMaster University, Hamilton, ON L8S 4K1, Canada
Preface

Milk whey proteins have come into wider use as food ingredients only in the last 40 years, taking their proper place at an emerging frontier, where nutrition and health interface. Largely regarded in the past as a waste by-product, advanced processing technology has propelled whey proteins to the top of the list of important nutrients, and still newer technologies will help keep it there permanently. This book provides an overview of the successes and challenges of the new whey processing industry. As food ingredients, whey proteins are used in a multitude of combinations and advanced well beyond the stage of simply delivering nutritional value by also providing essential functional and health benefits to complex food systems. The contributing authors to this book are outstanding scientists and health professionals in their fields of specialty, working diligently to enhance the utility of whey ingredients for the development of products that deliver demonstrated health benefits to consumers.

The knowledge presented in this book documents the wide range of potential uses for whey proteins not only as ingredients in food formulations but also as functional components providing additional metabolic and physiological benefits beyond merely supplying essential amino acids. Health and wellness, processing and functionality, are clearly areas of continuing research and offer growth opportunity for the food industry. The benefits from this continuously growing body of knowledge will be new ingredients and innovative products that will improve the overall well-being of consumers. Topics covered in this volume will provide food scientists and manufacturers with new insight into and appreciation of the health-promoting implications of whey protein science. The topics identified below and contributed by their respective subject matter experts represent the best science knowledge base in these areas. The state of the art and science are compelling, and an
Preface

Emerging database is confirming and solidifying the human knowledge base.

The compilation of knowledge on the functional and metabolic roles of whey proteins and their demonstrated biochemical efficacy in improving human health enhances the vision of the Institute of Food Technologists Book Communications Committee that supported the publication of *Whey Processing: Functionality and Health Benefits*. By presenting the latest information on the processing and functionality research conducted on whey proteins up to the present, this volume will accelerate new product innovation and create opportunities for the food industry.

Topics covered in volume include

- whey utilization, its history, and progress in process technology;
- fractionation and separation into biological fractions with health implications;
- whey emulsions and stability in acidic environments;
- some current applications in films, coatings, and gels;
- new process: texturization—use of texturized whey in snacks, meat analogs, candies, and as inclusions in candies;
- nanoparticles in hydrogels for delivery of bioactive components; and
- role of whey proteins in human health.

This book serves as a valuable resource for food industry professionals in research and development, academic faculty and students in food science, human nutrition and dairy science, nutrition and health professionals, and also policy makers.

Charles I. Onwulata, Ph.D.
Whey Processing, Functionality and Health Benefits