Aerosol Sampling
Aerosol Sampling
Science, Standards, Instrumentation and Applications

JAMES H. VINCENT
Department of Environmental Health Sciences,
School of Public Health,
University of Michigan,
Ann Arbor, MI, USA

John Wiley & Sons, Ltd
For Christine
Contents

Preface xvii

A SCIENTIFIC FRAMEWORK FOR AEROSOL SAMPLING 1

1 Introduction 3
1.1 Aerosols 3
1.2 Particle size 4
1.3 Elementary particle size statistics 5
1.4 Aerosol measurement 8
1.5 Sampler performance characteristics 9
References 12

2 Fluid and aerosol mechanical background 13
2.1 Fluid mechanical background 13
2.1.1 Introduction 13
2.1.2 Equations of fluid motion 13
2.1.3 Streamlines and streamsurfaces 15
2.1.4 Boundary layers 16
2.1.5 Stagnation 18
2.1.6 Potential flow 20
2.1.7 Turbulence 20
2.2 Aerosol mechanics 22
2.2.1 Particle drag force and mobility 22
2.2.2 Drag coefficient 22
2.2.3 Slip 23
2.2.4 General equation of motion under the influence of an external force 24
2.2.5 Particle motion without external forces 25
2.2.6 Particle aerodynamic diameter 27
2.2.7 Impaction 28
2.2.8 Molecular diffusion 30
2.2.9 Turbulent diffusion 32
References 33

3 Experimental methods in aerosol sampler studies 35
3.1 Introduction 35
3.2 Methodology for assessing sampler performance 35
3.2.1 The direct (trajectory) method 35
3.2.2 The indirect (comparison) method 36
3.2.3 Critique of the alternative methods 37
3.3 Scaling relationships for aerosol samplers
3.4 Test facilities
 3.4.1 Moving air
 3.4.2 Calm air
 3.4.3 Slowly moving air
3.5 Test aerosol generation
 3.5.1 Idealised test aerosols
 3.5.2 Dry-dispersed dusts
 3.5.3 Aerosol materials
 3.5.4 Electric charge effects
3.6 Reference methods
3.7 Assessment of collected aerosol
3.8 Aerosol sampler test protocols and procedures

References

4 The nature of air flow near aerosol samplers
4.1 Introduction
4.2 Line and point sink samplers
4.3 Thin-walled slot and tube entries
 4.3.1 Facing the freestream
 4.3.2 Other orientations
4.4 Thick-walled tubes
4.5 Simple blunt samplers facing the wind
 4.5.1 Two-dimensional blunt sampling systems
 4.5.2 Axially symmetric blunt sampling systems
4.6 Blunt samplers with orientations other than facing the wind
 4.6.1 A cylindrical blunt sampler
 4.6.2 Flow stability
 4.6.3 A spherical blunt sampler
4.7 More complex sampling systems
4.8 Effects of freestream turbulence

References

5 Aerosol aspiration in moving air
5.1 Introduction
5.2 Thin-walled tube samplers
 5.2.1 Qualitative picture of aerosol transport
 5.2.2 Impaction model for a thin-walled tube facing the freestream
 5.2.3 Physical definition of impaction efficiency for aerosol sampling
 5.2.4 Experimental studies for thin-walled tubes facing the freestream
 5.2.5 Experimental studies for thin-walled tubes at other orientations
 5.2.6 Impaction model for other orientations
 5.2.7 Mathematical models
 5.2.8 Conditions for ‘acceptable’ isokinetic sampling
5.3 Blunt samplers
 5.3.1 Impaction model for a blunt sampler facing the freestream

References
5.3.2 Experimental investigations of blunt samplers of simple shape facing the wind 120
5.3.3 Blunt samplers at other orientations 123
5.3.4 Mathematical and numerical approaches to blunt samplers 125
5.3.5 Orientation-averaged conditions 126
References 127

6 Aspiration in calm and slowly moving air 131
6.1 Introduction 131
6.2 Sampling in perfectly calm air 131
 6.2.1 Qualitative description 131
 6.2.2 Experimental studies for sampling in perfectly calm air 135
 6.2.3 Analytical models for aspiration efficiency in calm air 138
 6.2.4 Descriptive modeling of aspiration efficiency 144
 6.2.5 Criteria for ‘representative sampling’ in calm air 147
6.3 Slowly moving air 149
 6.3.1 Definition of calm air 150
 6.3.2 Intermediate conditions 152
References 155

7 Interferences to aerosol sampling 157
7.1 Introduction 157
7.2 Interferences during aspiration 157
 7.2.1 Effects of turbulence on aspiration 158
 7.2.2 Effects of electrostatic forces on aspiration 162
 7.2.3 External wall effects 165
7.3 Interferences after aspiration 173
 7.3.1 Deposition losses inside a straight sampling tube 173
 7.3.2 Deposition losses inside a bent sampling tube 180
 7.3.3 Deposition inside a thin-walled tube facing into the wind 181
 7.3.4 Deposition inside a thin-walled tube at other orientations 184
 7.3.5 Rebound of particles from internal walls 185
 7.3.6 More complicated systems 186
 7.3.7 Electrostatic effects 186
References 188

8 Options for aerosol particle size selection after aspiration 193
8.1 Introduction 193
8.2 Elutriation 194
 8.2.1 Vertical elutriation 194
 8.2.2 Horizontal elutriation 195
8.3 Filtration by porous foam media 197
8.4 Centrifugation 201
8.5 Impaction 205
 8.5.1 Conventional impaction 205
 8.5.2 Low pressure and micro-orifice impaction 209
 8.5.3 Virtual impaction 209
8.6 Diffusion
8.6.1 Deposition by diffusion in laminar flow through tubes
8.6.2 Deposition by diffusion in flow through screens
8.7 Other particle size-selective mechanisms
8.7.1 Electrostatic precipitation
8.7.2 Thermal precipitation
8.7.3 Optical processes

B STANDARDS FOR AEROSOLS

9 Framework for aerosol sampling in working, living and ambient environments
9.1 Introduction
9.2 Exposure to aerosols
9.2.1 The human respiratory tract
9.2.2 Definitions of exposure
9.2.3 Variability of exposure
9.3 Framework for health-related aerosol sampling
9.3.1 Criteria
9.3.2 Sampling instrumentation
9.3.3 Analytical methods
9.3.4 Sampling strategies
9.3.5 Exposure limits
9.3.6 Overview
9.4 Non-health-related aerosol standards

10 Particle size-selective criteria for coarse aerosol fractions
10.1 Introduction
10.2 Experimental studies of inhalability
10.2.1 Early experimental measurements of inhalability
10.2.2 Physical basis of inhalability
10.2.3 Inhalability for very large particles
10.2.4 Inhalability at very low wind speeds
10.3 Particle size-selective criteria for the inhalable fraction
10.3.1 Early recommendations
10.3.2 Modern criteria for the inhalable fraction
10.3.3 Further recommendations
10.4 Overview

11 Particle size-selective criteria for fine aerosol fractions
11.1 Introduction
11.2 Studies of regional deposition of inhaled aerosols
11.2.1 Framework
11.2.2 Theories, simulations and models
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.1 Sampling strategies and philosophies</td>
<td>312</td>
</tr>
<tr>
<td>13.2.2 Indices of aerosol exposure</td>
<td>313</td>
</tr>
<tr>
<td>13.2.3 Early gravimetric samplers for ‘total’ aerosol</td>
<td>313</td>
</tr>
<tr>
<td>13.2.4 Particle count samplers</td>
<td>314</td>
</tr>
<tr>
<td>13.2.5 Emergence of gravimetric samplers for the respirable fraction</td>
<td>316</td>
</tr>
<tr>
<td>13.2.6 Emergence of gravimetric samplers for ‘total’ and inhalable aerosol</td>
<td>317</td>
</tr>
<tr>
<td>13.2.7 Other aerosol fractions</td>
<td>317</td>
</tr>
<tr>
<td>13.2.8 Sampling to measure aerosol particle size distribution</td>
<td>317</td>
</tr>
<tr>
<td>13.2.9 Direct-reading instruments</td>
<td>318</td>
</tr>
<tr>
<td>13.2.10 Overview</td>
<td>319</td>
</tr>
<tr>
<td>13.3 Ambient atmospheric aerosol sampling</td>
<td>319</td>
</tr>
<tr>
<td>13.3.1 Sampling strategies and philosophies</td>
<td>319</td>
</tr>
<tr>
<td>13.3.2 Indices of health-related aerosol exposure</td>
<td>320</td>
</tr>
<tr>
<td>13.3.3 Indices for coarse ‘nuisance’ aerosols</td>
<td>322</td>
</tr>
<tr>
<td>13.3.4 Direct-reading instruments</td>
<td>322</td>
</tr>
<tr>
<td>13.3.5 Overview</td>
<td>322</td>
</tr>
<tr>
<td>References</td>
<td>323</td>
</tr>
</tbody>
</table>

14 Sampling for coarse aerosols in workplaces

14.1 Introduction 327

14.2 Static (or area) samplers for coarse aerosol fractions

14.2.1 ‘Total’ aerosol 327

14.2.2 Inhalable aerosol 328

14.3 Personal samplers for coarse aerosol fractions 333

14.3.1 ‘Total’ aerosol 333

14.3.2 Inhalable aerosol 344

14.3.3 Other samplers 351

14.4 Analysis of performance data for inhalable aerosol samplers 352

14.4.1 Statistics 352

14.4.2 Modeling 352

14.5 Passive aerosol samplers 354

References 356

15 Sampling for fine aerosol fractions in workplaces

15.1 Introduction 359

15.2 Samplers for the respirable fraction 359

15.2.1 Early samplers 360

15.2.2 Horizontal elutriators 364

15.2.3 Cyclones 368

15.2.4 Impactors 376

15.2.5 Porous plastic foam filter samplers 378

15.2.6 Other samplers 383

15.2.7 Sampling for ‘respirable’ fibers 385

15.3 Samplers for the thoracic fraction 385

15.3.1 Vertical elutriators 386

15.3.2 Cyclones 386

References 387
15.3.3 Impactors
15.3.4 Porous plastic foam filter samplers
15.4 Samplers for PM$_{2.5}$
15.5 Thoracic particle size selection for fibrous aerosols
15.6 Sampling for very fine aerosols
 15.6.1 Ultrafine aerosols
 15.6.2 Combustion-related aerosols
15.7 Simultaneous sampling for more than one aerosol fraction

References

16 Sampling in stacks and ducts
16.1 Introduction
16.2 Basic considerations
16.3 Stack sampling methods
 16.3.1 United States of America
 16.3.2 United Kingdom and elsewhere
16.4 Sampling probes for stack sampling
 16.4.1 Standard probes
 16.4.2 Velocity-sensing probes
 16.4.3 Null-type probes
 16.4.4 Self-compensating probes
 16.4.5 Dilution
16.5 Sampling for determining particle size distribution in stacks
16.6 Direct-reading stack-monitoring instruments

References

17 Sampling for aerosols in the ambient atmosphere
17.1 Introduction
17.2 Sampling for coarse ‘nuisance’ aerosols
17.3 Sampling for ‘black smoke’
17.4 Sampling for total suspended particulate in the ambient atmosphere
 17.4.1 ‘Total’ aerosol
 17.4.2 Inhalable aerosol
17.5 Sampling for fine aerosol fractions in the ambient atmosphere
 17.5.1 PM$_{10}$
 17.5.2 PM$_{2.5}$
 17.5.3 Ultrafine aerosols
17.6 Meteorological sampling

References

18 Sampling for the determination of particle size distribution
18.1 Introduction
18.2 Rationale
18.3 Aerosol spectrometers
 18.3.1 Horizontal elutriators
 18.3.2 Centrifuges