ADVANCED DESIGN TECHNIQUES AND REALIZATIONS OF MICROWAVE AND RF FILTERS
ADVANCED DESIGN TECHNIQUES AND REALIZATIONS OF MICROWAVE AND RF FILTERS

PIERRE JARRY
JACQUES BENEAT

IEEE PRESS
WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
CONTENTS

Foreword xiii
Preface xv

PART I MICROWAVE FILTER FUNDAMENTALS 1

1 Scattering Parameters and ABCD Matrices 3
 1.1 Introduction, 3
 1.2 Scattering Matrix of a Two-Port System, 4
 1.2.1 Definitions, 4
 1.2.2 Computing the S Parameters, 6
 1.2.3 S-Parameter Properties, 10
 1.3 ABCD Matrix of a Two-Port System, 10
 1.3.1 ABCD Matrix of Basic Elements, 11
 1.3.2 Cascade and Multiplication Property, 12
 1.3.3 Input Impedence of a Loaded Two-Port, 14
 1.3.4 Impedance and Admittance Inverters, 14
 1.3.5 ABCD-Parameter Properties, 17
 1.4 Conversion from Formulation S to ABCD
 and ABCD to S, 18
 1.5 Bisection Theorem for Symmetrical Networks, 18
 1.6 Conclusions, 21
 References, 21

2 Approximations and Synthesis 23
 2.1 Introduction, 23
 2.2 Ideal Low-Pass Filtering Characteristics, 24
2.3 Functions Approximating the Ideal Low-Pass Magnitude Response, 25
 2.3.1 Butterworth Function, 25
 2.3.2 Chebyshev Function, 26
 2.3.3 Elliptic Function, 27
 2.3.4 Generalized Chebyshev (Pseudoelliptic) Function, 29
2.4 Functions Approximating the Ideal Low-Pass Phase Response, 30
 2.4.1 Bessel Function, 30
 2.4.2 Rhodes Equidistant Linear-Phase Function, 31
2.5 Low-Pass Lumped Ladder Prototypes, 32
 2.5.1 General Synthesis Technique, 32
 2.5.2 Normalized Low-Pass Ladders, 36
2.6 Impedance and Frequency Scaling, 39
 2.6.1 Impedance Scaling, 39
 2.6.2 Frequency Scaling, 40
2.7 LC Filter Example, 41
2.8 Impedance and Admittance Inverter Ladders, 41
 2.8.1 Low-Pass Prototypes, 41
 2.8.2 Scaling Flexibility, 42
 2.8.3 Bandpass Ladders, 44
 2.8.4 Filter Examples, 45
2.9 Conclusions, 46
References, 46

3 Waveguides and Transmission Lines

3.1 Introduction, 49
3.2 Rectangular Waveguides and Cavities, 49
 3.2.1 Rectangular Waveguides, 49
 3.2.2 Rectangular Cavities, 52
3.3 Circular Waveguides and Cavities, 53
 3.3.1 Circular Waveguides, 53
 3.3.2 Cylindrical Cavities, 55
3.4 Evanescent Modes, 56
3.5 Planar Transmission Lines, 57
3.6 Distributed Circuits, 60
3.7 Conclusions, 63
References, 64

4 Categorization of Microwave Filters

4.1 Introduction, 67
4.2 Minimum-Phase Microwave Filters, 68
 4.2.1 General Design Steps, 68
4.2.2 Minimum-Phase Filter Examples, 70
4.3 Non-Minimum-Phase Symmetrical Response Microwave Filters, 70
 4.3.1 General Design Steps, 71
 4.3.2 Non-Minimum-Phase Symmetrical Response Filter Examples, 73
 4.3.3 Microwave Linear-Phase Filters, 73
4.4 Non-Minimum-Phase Asymmetrical Response Microwave Filters, 74
 4.4.1 General Design Steps, 74
 4.4.2 Non-Minimum-Phase Asymmetrical Response Filter Examples, 77
 4.4.3 Multimode Microwave Filters by Optimization, 79
4.5 Conclusions, 79
References, 80

PART II MINIMUM-PHASE FILTERS 83

5 Capacitive-Gap Filters for Millimeter Waves 85
 5.1 Introduction, 85
 5.2 Capacitive-Gap Filters, 86
 5.2.1 Capacitive-Gap Filter Structure, 86
 5.2.2 Design Procedures, 87
 5.2.3 Step-by-Step Design Example, 91
 5.2.4 Filter Realizations, 93
 5.3 Extension to Millimeter Waves, 95
 5.3.1 Millimeter-Wave Technology, 95
 5.3.2 Fifth-Order Chebyshev Capacitive-Gap Filter at 35 GHz, 96
 5.4 Electromagnetic Characterization of SSS, 99
 5.5 Conclusions, 102
References, 102

6 Evanescent-Mode Waveguide Filters with Dielectric Inserts 105
 6.1 Introduction, 105
 6.2 Evanescent-Mode Waveguide Filters, 106
 6.2.1 Scattering and ABCD Descriptions of the Structure, 108
 6.2.2 Equivalent Circuit of the Structure, 110
 6.2.3 Filter Design Procedure, 115
 6.2.4 Design Examples and Realizations, 117
 6.3 Folded Evanescent-Mode Waveguide Filters, 121
 6.3.1 Scattering and ABCD Descriptions of the Additional Elements, 123
6.3.2 Filter Design Procedure, 125
6.3.3 Design Examples and Realizations, 125
6.4 Conclusions, 127
References, 128

7 Interdigital Filters

7.1 Introduction, 131
7.2 Interdigital Filters, 131
7.3 Design Method, 135
 7.3.1 Prototype Circuit, 135
 7.3.2 Equivalent Circuit, 137
 7.3.3 Input and Output, 140
 7.3.4 Case of Narrowband Filters, 141
 7.3.5 Frequency Transformation, 141
 7.3.6 Physical Parameters of the Interdigital Filter, 142
7.4 Design Examples, 145
 7.4.1 Wideband Example, 145
 7.4.2 Narrowband Example, 147
7.5 Realizations and Measured Performance, 148
7.6 Conclusions, 150
References, 151

8 Combinline Filters Implemented in SSS

8.1 Introduction, 153
8.2 Combinline Filters, 153
8.3 Design Method, 156
 8.3.1 Prototype Circuit, 156
 8.3.2 Equivalent Circuit, 157
 8.3.3 Input and Output, 159
 8.3.4 Feasibility, 162
 8.3.5 Physical Parameters of the Combinline Structure, 162
8.4 Design Example, 165
8.5 Realizations and Measured Performance, 168
8.6 Conclusions, 169
References, 170

PART III NON-MINIMUM-PHASE SYMMETRICAL RESPONSE FILTERS

9 Generalized Interdigital Filters with Conditions on Amplitude and Phase

9.1 Introduction, 173
9.2 Generalized Interdigital Filter, 174
9.3 Simultaneous Amplitude and Phase Functions, 175
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.1</td>
<td>Minimum-Phase Functions with Linear Phase</td>
<td>175</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Non-Minimum-Phase Functions with Simultaneous Conditions on the Amplitude and Phase</td>
<td>177</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Synthesis of Non-Minimum-Phase Functions with Simultaneous Conditions on the Amplitude and Phase</td>
<td>180</td>
</tr>
<tr>
<td>9.4</td>
<td>Design Method</td>
<td>182</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Even-Mode Equivalent Circuit</td>
<td>182</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Frequency Transformation</td>
<td>186</td>
</tr>
<tr>
<td>9.4.3</td>
<td>Physical Parameters of the Interdigital Structure</td>
<td>187</td>
</tr>
<tr>
<td>9.5</td>
<td>Design Example</td>
<td>191</td>
</tr>
<tr>
<td>9.6</td>
<td>Realizations and Measured Performance</td>
<td>194</td>
</tr>
<tr>
<td>9.7</td>
<td>Conclusions</td>
<td>195</td>
</tr>
</tbody>
</table>

| References | 197 |

10 Temperature-Stable Narrowband Monomode TE_{011} Linear-Phase Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>10.2</td>
<td>TE_{011} Filters</td>
<td>200</td>
</tr>
<tr>
<td>10.3</td>
<td>Low-Pass Prototype</td>
<td>200</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Amplitude</td>
<td>200</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Delay</td>
<td>201</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Synthesis of the Low-Pass Prototype</td>
<td>202</td>
</tr>
<tr>
<td>10.4</td>
<td>Design Method</td>
<td>204</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Matching the Coupling</td>
<td>204</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Selecting the Cavities</td>
<td>207</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Defining the Coupling</td>
<td>208</td>
</tr>
<tr>
<td>10.5</td>
<td>Design Example</td>
<td>210</td>
</tr>
<tr>
<td>10.6</td>
<td>Realizations and Measured Performance</td>
<td>213</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Amplitude and Phase Performance</td>
<td>213</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Temperature Performance</td>
<td>214</td>
</tr>
<tr>
<td>10.7</td>
<td>Conclusions</td>
<td>215</td>
</tr>
</tbody>
</table>

| References | 217 |

PART IV NON-MINIMUM-PHASE ASYMMETRICAL RESPONSE FILTERS

11 Asymmetrical Capacitive-Gap Coupled Line Filters

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>Capacitive-Gap Coupled Line Filters</td>
<td>222</td>
</tr>
<tr>
<td>11.3</td>
<td>Synthesis of Low-Pass Asymmetrical Generalized Chebyshev Filters</td>
<td>222</td>
</tr>
<tr>
<td>11.3.1</td>
<td>In-Line Network</td>
<td>225</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Analysis of the In-Line Network</td>
<td>226</td>
</tr>
</tbody>
</table>
11.3.3 Synthesis of the In-Line Network, 229
11.3.4 Frequency Transformation, 232
11.4 Design Method, 233
11.5 Design Example, 238
11.6 Realization of the CGCL Filter, 243
11.7 Conclusions, 244
References, 245

12 Asymmetrical Dual-Mode TE_{102}/TE_{301} Thick Iris Rectangular In-Line Waveguide Filters with Transmission Zeros 247
12.1 Introduction, 247
12.2 TE_{102}/TE_{301} Filters, 248
12.3 Synthesis of Low-Pass Asymmetrical Generalized Chebyshev Filters, 248
12.3.1 Fundamental Element, 249
12.3.2 Analysis of the In-Line Network, 250
12.3.3 Synthesis by Simple Extraction Techniques, 252
12.3.4 Frequency Transformation, 254
12.4 Design Method, 256
12.4.1 Equivalent Circuit of Monomode and Bimode Cavities, 256
12.4.2 Optimization Approach, 256
12.5 Design Example, 262
12.6 Realizations and Measured Performance, 266
12.6.1 Third-Order Filter with One Transmission Zero, 266
12.6.2 Fourth-Order Filter with Two Transmission Zeros, 268
12.7 Conclusions, 269
References, 270

13 Asymmetrical Cylindrical Dual-Mode Waveguide Filters with Transmission Zeros 273
13.1 Introduction, 273
13.2 Dual-Mode Cylindrical Waveguide Filters, 274
13.3 Synthesis of Low-Pass Asymmetrical Generalized Chebyshev Filters, 275
13.3.1 Synthesis From a Cross-Coupled Prototype, 275
13.3.2 Extracting the Elements from the Chain Matrix, 277
13.3.3 Coupling Graph and Frequency Transformation, 281
13.4 Design Method, 284
13.4.1 Rotation Matrix, 284
13.4.2 Cruciform Iris, 286
13.4.3 Physical Parameters of the Irises, 290
13.5 Realizations and Measured Performance, 292
13.5.1 Fourth-Order Filter with One Transmission Zero on the Left, 292
13.5.2 Fourth-Order Filter with Two Transmission Zeros on the Right, 293
13.5.3 Sixth-Order Filter with One Transmission Zero on the Right, 295
13.6 Conclusions, 296
References, 296

14 Asymmetrical Multimode Rectangular Building Block Filters Using Genetic Optimization 299
14.1 Introduction, 299
14.2 Multimode Rectangular Waveguide Filters, 300
14.3 Optimization-Based Design, 302
14.3.1 Genetic Algorithm, 302
14.3.2 Example, 308
14.4 Realizations, 313
14.4.1 Fourth-Order Filter with Two Transmission Zeros, 313
14.4.2 Seventh-Order Filter with Four Transmission Zeros, 314
14.4.3 Extension to a Tenth-Order Filter with Six Transmission Zeros, 318
14.5 Conclusions, 320
References, 320

Appendix 1: Lossless Systems 323
Appendix 2: Redundant Elements 325
Appendix 3: Modal Analysis of Waveguide Step Discontinuities 328
Appendix 4: Trisections with Unity Inverters on the Inside or on the Outside 338
Appendix 5: Reference Fields and Scattering Matrices for Multimodal Rectangular Waveguide Filters 340
Index 353
Being asked to review the manuscript of Advanced Design Techniques and Realizations of Microwave and RF filters was an honor. The title truly represents the book’s focus and its contents.

Filters are the most important passive components used in RF and microwave subsystems and instruments to obtain a precise frequency response. In the early years of filter development, significant progress was made in waveguide and planar TEM filters. During the past two decades, filter technology has advanced in the area of emerging applications for both military and commercial markets. Several major developmental categories in filter technology are included: performance improvement, development of CAD tools, full-wave analysis, new structures and configurations, and advanced materials and associated technologies. Advanced materials/technologies such as high-temperature superconductor substrates, micromachining, multilayer monolithic, low-temperature co-fired ceramic, and liquid-crystal polymer are commonly used in the development of advanced filters. Some recent applications of filters include dual-band communication, such as wireless local area networks and ultrawideband communication and imaging.

This book treats the subject to meet the needs for advanced filter design based on planar and waveguide structures that can satisfy the ever-increasing demand for design accuracy, reliability, fast development times, and cost-effective solutions. The topics discussed include analyses, design, modeling, fabrication, and practical considerations for both ladder and bridged filters. Modern design techniques are discussed for a wide variety of microwave filters, including comprehensive analyses and modeling of structures. These topics are self-contained, with practical aspects addressed in detail. Extensive design information in the form of equations, tables, graphs, and solved examples are included. To aid in solving filter-related design problems from specifications to realization of the end-product, the book provides a unique integration of theory and practical aspects of filters. Simple design equations and numerous practical examples are included which simplify the concepts of advanced filter design. With emphasis on theory,