TRANSPORT PHENOMENA FOR CHEMICAL REACTOR DESIGN

Laurence A. Belfiore
Department of Chemical Engineering
Colorado State University
Fort Collins, CO
TRANSPORT
PHENOMENA
FOR CHEMICAL
REACTOR DESIGN
This book is dedicated to Alphonse and all the women in my life: Olivia, Carol, Lorraine, Jenny, Sarah, and Sally. Buddy and Pookie were also inspirational. It is an environmentally friendly book because all proceeds will be used to support motorless motion in Colorado’s clean air above 10,000 feet, particularly the ascent of Mount Evans at 14,260 feet from Bergen Park (i.e., the highest paved road on the planet), which, along with col de la Bonette at 2830 meters northwest of St. Etienne de Tinee and southeast of Barcelonnette (i.e., the highest paved road in Europe), is one of the most awesome bike rides on the planet.
CONTENTS

PREFACE

PART I ELEMENTARY TOPICS IN CHEMICAL REACTOR DESIGN

1 Multiple Chemical Reactions in Plug Flow Tubular Reactors and Continuous Stirred Tank Reactors

1-1 Gas-Phase Plug-Flow Tubular Reactors That Produce Triethanolamine from Ethylene Oxide and Ammonia, 3

1-2 Multiple Chemical Reactions in a Liquid-Phase CSTR, 11

1-3 Multiple Chemical Reactions in a CSTR Train, 19

Problems, 26

2 Start Up Behavior of a Series Configuration of Continuous Stirred Tank Reactors

2-1 Analysis of Multiple Reactions in Two CSTRs: Illustrative Problem, 34

2-2 Analysis of a Train of Five CSTRs: Illustrative Problem, 38

Problems, 46
3 Adiabatic Plug-Flow Tubular Reactor That Produces Methanol Reversibly in the Gas Phase from Carbon Monoxide and Hydrogen

3-1 Temperature-Averaged Specific Heats, 48
3-2 Conversion Dependence of Mass Fraction and Heat Capacity of the Mixture, 50
3-3 Plug-Flow Mass Balance in Terms of CO Conversion, 51
3-4 Thermal Energy Balance for a Differential Reactor, 52
3-5 Thermodynamics of Multicomponent Mixtures, 53
3-6 Coupled Heat and Mass Transfer, 55
3-7 Kinetics and Thermodynamics of Elementary Reversible Reactions in the Gas Phase, 56
3-8 Integration of the Nonisothermal PFR Design Equation, 60
Problems, 62

4 Coupled Heat and Mass Transfer in Nonisothermal Liquid-Phase Tubular Reactors with Strongly Exothermic Chemical Reactions

4-1 Strategies to Control Thermal Runaway, 65
4-2 Parametric Sensitivity Analysis, 83
4-3 Endothermic Reactions in a Cocurrent Cooling Fluid, 87
4-4 Countercurrent Cooling in Tubular Reactors with Exothermic Chemical Reactions, 95
4-5 Manipulating the Inlet/Outlet Temperature of a Countercurrent Cooling Fluid: Multiple Stationary-State Behavior in Exothermic PFRs, 97
Problems, 104

5 Multiple Stationary States in Continuous Stirred Tank Reactors

5-1 Mass Balance, 106
5-2 Chemical Kinetics, 106
5-3 Thermal Energy Balance, 107
5-4 Multiple Stationary States, 110
5-5 Endothermic Chemical Reactions, 115
Problems, 117

6 Coupled Heat and Mass Transfer with Chemical Reaction in Batch Reactors 123
6-1 Isothermal Analysis of Experimental Rate Data, 123
6-2 Formalism for Multiple Reactions, 129
6-3 Adiabatic Operation, 130
6-4 Nonisothermal Analysis of a Constant-Volume Batch Reactor, 131
Problems, 136

7 Total Pressure Method of Reaction-Rate Data Analysis 139
7-1 Elementary Reversible Gas-Phase Reactions in a Constant-Volume Flask, 139
7-2 Generalized Linear Least-Squares Analysis for a Second-Order Polynomial with One Independent Variable, 142
Problems, 145

PART II TRANSPORT PHENOMENA: FUNDAMENTALS AND APPLICATIONS 153

8 Applications of the Equations of Change in Fluid Dynamics 155
8-1 Important Variables, 155
8-2 Physical Properties in Fluid Dynamics, 156
8-3 Fundamental Balance in Momentum Transport, 158
8-4 Equation of Motion, 167
8-5 Exact Differentials, 173
8-6 Low-Reynolds-Number Hydrodynamics, 175
8-7 Potential Flow Theory, 205
Problems, 222

9 Derivation of the Mass Transfer Equation 253
9-1 Accumulation Rate Process, 253
9-2 Rate Processes Due to Mass Flux Across the Surface That Bounds the Control Volume, 254
9-3 Rate Processes Due to Multiple Chemical Reactions, 255
9-4 Constructing Integral and Microscopic Descriptions of the Mass Transfer Equation, 256
9-5 Diffusional Fluxes in Multicomponent Mixtures, 257
9-6 Diffusional Fluxes and Linear Transport Laws in Binary and Pseudo-Binary Mixtures, 260
9-7 Simplification of the Mass Transfer Equation for Pseudo-Binary Incompressible Mixtures with Constant Physical Properties, 261

10 Dimensional Analysis of the Mass Transfer Equation 265
10-1 Dimensional Scaling Factors for the Mass Transfer Rate Processes, 265
10-2 Dimensionless Form of the Generalized Mass Transfer Equation with Unsteady-State Convection, Diffusion, and Chemical Reaction, 266
10-3 Functional Dependence of the Molar Density of Species \(i\) Via Dimensional Analysis, 269
10-4 Maximum Number of Dimensionless Groups That Can Be Calculated for a Generic Mass Transfer Problem, 271

11 Laminar Boundary Layer Mass Transfer around Solid Spheres, Gas Bubbles, and Other Submerged Objects 275
11-1 Boundary Layer Mass Transfer Analysis, 275
11-2 Tangential Velocity Component \(v_{\theta}\) Within the Mass Transfer Boundary Layer, 284
11-3 Boundary Layer Solution of the Mass Transfer Equation, 287
11-4 Interphase Mass Transfer at the Solid–Liquid Interface, 298
11-5 Laminar Boundary Layer Mass Transfer Across a Spherical Gas–Liquid Interface, 303
11-6 Boundary Layer Solution of the Mass Transfer Equation Around a Gas Bubble, 306
CONTENTS

11-7 Interphase Mass Transfer at the Gas–Liquid Interface, 313
Problems, 328

12 Dimensional Analysis of the Equations of Change for Fluid Dynamics Within the Mass Transfer Boundary Layer 361

12-1 Generalized Dimensionless Form of the Equation of Motion for Incompressible Fluids Undergoing Laminar Flow, 362
12-2 Incompressible Newtonian Fluids in the Creeping Flow Regime, 362
12-3 Locally Flat Momentum Boundary Layer Problem for Laminar Flow Around Solid Spheres, 363
12-4 Renormalization of the Dimensionless Variables Reveals Explicit Dependence of g^* on Re, 365

13 Diffusion and Chemical Reaction Across Spherical Gas–Liquid Interfaces 369

13-1 Molar Density Profile, 369
13-2 Molar Flux Analysis, 372

PART III KINETICS AND ELEMENTARY SURFACE SCIENCE 381

14 Kinetic Mechanisms and Rate Expressions for Heterogeneous Surface-Catalyzed Chemical Reactions 383

14-1 Converting Reactants to Products, 383
14-2 Isotherms, 384
14-3 Single-Site Adsorption of Each Component in a Multicomponent Mixture, 392
14-4 Dual-Site Adsorption of Submolecular Fragments, 394
14-5 Summary of Adsorption Isotherms for Pure Gases, 397
14-6 Hougen–Watson Kinetic Models, 399
14-7 Pressure Dependence of the Kinetic Rate Constant Via Elements of Transition State Theory, 420
14-8 Interpretation of Heterogeneous Kinetic Rate Data Via Hougen–Watson Models, 424
Problems, 428
PART IV MASS TRANSFER AND CHEMICAL REACTION IN ISOTHERMAL CATALYTIC PELLETS 447

15 Diffusion and Heterogeneous Chemical Reaction in Isothermal Catalytic Pellets 449

15-1 Complex Problem Descriptions Without Invoking Any Assumptions, 449

15-2 Diffusion and Pseudo-Homogeneous Chemical Reactions in Isothermal Catalytic Pellets, 452

15-4 Diffusion and Heterogeneous Chemical Reactions in Isothermal Catalytic Pellets, 458

Problem, 459

16 Complete Analytical Solutions for Diffusion and Zeroth-Order Chemical Reactions in Isothermal Catalytic Pellets 461

16-1 Catalytic Pellets with Rectangular Symmetry, 461

16-2 Long, Cylindrically Shaped Catalysts, 464

16-3 Spherical Pellets, 466

16-4 Redefining the Intrapellet Damkohler Number So That Its Critical Value Might Be the Same for All Pellet Geometries, 468

Problems, 470

17 Complete Analytical Solutions for Diffusion and First-Order Chemical Reactions in Isothermal Catalytic Pellets 473

17-1 Catalytic Pellets with Rectangular Symmetry, 473

17-2 Long, Cylindrically Shaped Catalysts, 475

17-3 Spherical Pellets, 476

Problems, 480

18 Numerical Solutions for Diffusion and nth-Order Chemical Reactions in Isothermal Catalytic Pellets 483

18-1 Kinetic Rate Law and Diffusional Flux, 483
18-2 Mass Transfer Equation in Three Coordinate Systems, 484
18-3 Numerical Results for Second-Order Irreversible Chemical Kinetics, 487
18-4 Equivalent Examples with Different Characteristic Length Scales, 488

19 Numerical Solutions for Diffusion and Hougen–Watson Chemical Kinetics in Isothermal Catalytic Pellets 491
19-1 Dimensionless Kinetic Rate Law, 491
19-2 Mass Balance for Reactant A, 493
19-3 Dimensionless Correlation for the Effectiveness Factor in Terms of the Intrapellet Damkohler Number, 497
19-4 Dimensionless Correlation for Porous Wafers with Rectangular Symmetry, 500
19-5 Numerical Results for \(A_2 + B \rightarrow C + D \) in Flat-Slab Wafers with Rectangular Symmetry, 501

Problems, 505

20 Internal Mass Transfer Limitations in Isothermal Catalytic Pellets 509
20-1 Reactor Design Strategy, 509
20-2 Correlations for Catalysts with Different Macroscopic Symmetry, 512
20-3 Effectiveness Factors, 515
20-4 Dimensionless Correlation between the Effectiveness Factor and the Intrapellet Damkohler Number, 521

Problems, 527

21 Diffusion Coefficients and Damköhler Numbers Within the Internal Pores of Catalytic Pellets 539
21-1 Dependence of Intrapellet Pore Diffusion on Molecular Size, 539
21-2 Knudsen Diffusion in Straight Cylindrical Pores, 543
21-3 Ordinary Molecular Diffusion in Binary and Pseudo-Binary Mixtures, 544
21-4 Estimating Tortuosity Factors and Intrapellet Porosity Based on the Distribution in Orientation and Size of Catalytic Pores Via the Parallel-Pore Model, 553

Problems, 558