Mycotoxin Reduction in Grain Chains

John F. Leslie & Antonio F. Logrieco

WILEY Blackwell
Mycotoxin Reduction in Grain Chains
Mycotoxin Reduction in Grain Chains

Edited by
JOHN F. LESLIE
Department of Plant Pathology
Kansas State University
Manhattan, Kansas, USA

ANTONIO F. LOGRIECO
Institute of Sciences of Food Production (ISPA)
National Research Council (CNR)
Bari, Italy

WILEY Blackwell
Contents

List of Contributors xiii
Preface xix

Chapter 1 An Introduction to the MycoRed Project 1
Antonio F. Logrieco and Angelo Visconti
 Introduction 1
 MycoRed Objectives 2
 MycoRed Structure 5
 Social and Economic Impact 6
 Conclusions 7
 References 7

Part I The Maize Grain Chain 9

Chapter 2 Identification of Toxigenic Aspergillus and Fusarium Species in the Maize Grain Chain 11
Deepak Bhatnagar, Gary Payne, Maren Klich, and John F. Leslie
 Introduction 11
 Morphological Identification of Aflatoxin-Producing A. flavus and A. parasiticus 12
 Morphological Identification of Toxin-Producing Fusarium Species 15
 Cladal Relationship and Organization of the Toxin Biosynthetic Gene Cluster 18
 Conclusions 21
 Acknowledgments 21
 References 21

Chapter 3 Determination of Mycotoxins in Maize 26
Gordon S. Shephard
 Introduction 26
 Aflatoxin 27
 Fumonisins 31
 Discussion and Conclusions 34
 References 34
Chapter 4 Breeding Maize for Resistance to Mycotoxins 37
Alessandra Lanubile, Valentina Maschietto, and Adriano Marocco

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>Techniques for Phenotyping Ear Rot and Mycotoxin Contamination</td>
<td>38</td>
</tr>
<tr>
<td>Sources and Genetics of Resistance</td>
<td>40</td>
</tr>
<tr>
<td>Traits Providing Resistance to Ear Rots</td>
<td>42</td>
</tr>
<tr>
<td>Genomic Resources for Analyzing Fusarium and Aspergillus–Maize Interactions</td>
<td>44</td>
</tr>
<tr>
<td>Transgenic Approaches to Reduce Ear Rots and Mycotoxin Accumulation</td>
<td>48</td>
</tr>
<tr>
<td>Future Prospects</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
</tbody>
</table>

Chapter 5 Crop Management Practices to Minimize the Risk of Mycotoxins Contamination in Temperate-Zone Maize 59
Gary Munkvold

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>59</td>
</tr>
<tr>
<td>Pre-planting Management Decisions</td>
<td>60</td>
</tr>
<tr>
<td>Post-planting Management Decisions</td>
<td>66</td>
</tr>
<tr>
<td>Integration of Risk Management Tactics</td>
<td>69</td>
</tr>
<tr>
<td>Risk Assessment or Prediction Modeling</td>
<td>70</td>
</tr>
<tr>
<td>Discussion</td>
<td>71</td>
</tr>
<tr>
<td>References</td>
<td>74</td>
</tr>
</tbody>
</table>

Chapter 6 Best Stored Maize Management Practices for the Prevention of Mycotoxin Contamination 78
Lakshmikantha H. Channaiah and Dirk E. Maier

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td>Fungal Source</td>
<td>79</td>
</tr>
<tr>
<td>Factors Affecting Fungal Growth and Mycotoxin Biosynthesis</td>
<td>80</td>
</tr>
<tr>
<td>Equilibrium Moisture Content of Maize</td>
<td>80</td>
</tr>
<tr>
<td>Common Fungi and Mycotoxins in Maize</td>
<td>81</td>
</tr>
<tr>
<td>Harvest Considerations</td>
<td>82</td>
</tr>
<tr>
<td>Maize Drying</td>
<td>83</td>
</tr>
<tr>
<td>Mechanical Damage, Broken Kernels, and Foreign Materials</td>
<td>83</td>
</tr>
<tr>
<td>Condensation</td>
<td>83</td>
</tr>
<tr>
<td>The SLAM Strategy</td>
<td>84</td>
</tr>
<tr>
<td>CO$_2$ Monitoring</td>
<td>85</td>
</tr>
<tr>
<td>Treating Mycotoxin-Contaminated Maize Grain</td>
<td>86</td>
</tr>
<tr>
<td>Conclusions</td>
<td>86</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>87</td>
</tr>
<tr>
<td>References</td>
<td>87</td>
</tr>
</tbody>
</table>

Chapter 7 Good Food-Processing Techniques: Stability of Mycotoxins in Processed Maize-Based Foods 89
Lloyd B. Bullerman and Andreia Bianchini

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>89</td>
</tr>
<tr>
<td>Mycotoxins</td>
<td>90</td>
</tr>
</tbody>
</table>
Chapter 8 Mycotoxin Reduction in Animal Diets
Didier Jans, Katia Pedrosa, Dian Schatzmayr, Gérard Bertin, and Bertrand Grenier

Introduction 101
Adsorption of Mycotoxins 102
Biological Detoxification 108
Conclusions 109
References 110

Chapter 9 Physical and Chemical Methods for Mycotoxin Decontamination in Maize
Bertrand Grenier, Ana-Paula Loureiro-Bracarense, John F. Leslie, and Isabelle P. Oswald

Introduction 116
Physical Methods—Removal of Contaminated Materials 118
Physical Methods—Mycotoxin Inactivation 120
Physical Methods—Conclusions 121
Chemical Methods 122
Conclusions 126
Acknowledgments 127
References 127

Chapter 10 Aflatoxin B1 Chemoprevention Strategies in Countries with Frequent Exposure to Mycotoxins
Paul C. Turner

Introduction 130
Aflatoxins 131
Chemoprevention 133
Uptake Inhibitors 138
Summary 141
References 142

Part II The Wheat Grain Chain

Chapter 11 Identification of Fusarium spp. and Penicillium verrucosum in the Wheat Grain Chain
Antonio Moretti, Cees Waalwijk, and Rolf Geisen

Introduction 151
The Problem of Fusarium and Its Toxins in Wheat: Fusarium Head Blight (FHB) 152
PCR Methods to Detect Fusarium in Wheat 153
New Detection Platforms 155
Conclusions and Future Perspectives 158
The Problem of *Penicillium* and Its Toxins in Wheat 158
PCR Methods to Detect *P. verrucosum* in Wheat 160
RT-PCR Methods for Quantification and Monitoring of *P. verrucosum*
 in Wheat 161
The Application of Novel Platforms 163
Outlook 164
References 164

Chapter 12 Analytical Methods for Mycotoxins in the Wheat Chain 169
John Gilbert and Michelangelo Pascale

Introduction 169
Screening Methods for Mycotoxins in the Wheat Chain 170
Official Methods for Mycotoxins in the Wheat Chain 174
Research Methods for Mycotoxins in the Wheat Chain 177
Conclusions and/or Future Perspectives 183
References 184

Chapter 13 Breeding for Resistance to *Fusarium* Head Blight in Wheat 189
Ákos Mesterházy

Introduction 189
Mycotoxins and Their Origin 190
The Wheat/*Fusarium* Breeding System 191
How Does a Breeding System Operate? 201
Summary and Outlook 202
References 203

Chapter 14 Good Agricultural and Harvest Practices to Reduce Mycotoxin
 Contamination in Wheat in Temperate Countries 209
Barry J. Jacobsen

Introduction 209
Fusarium Head Blight 210
Ergot 211
Pathogen-Free Seed 212
Fungicides 212
Crop Rotation and Residue Management 213
Irrigation 213
Delayed Harvest 214
Storage 214
Aflatoxins 214
Sterigmatocystin 214
Ochratoxins 215
Integrated Management to Reduce Losses from Mycotoxigenic Fungi 215
Future Prospects 216
References 217
Chapter 15 Good Management Practices for Minimizing the Risk of *Fusarium* Head Blight and Mycotoxin Contamination in Nontraditional Warmer Wheat-Growing Areas
Etienne Duveiller, Monica Mezzalama, and Anne Legrèве
Introduction
Nontraditional Warmer Growing Areas Where *Fusarium* Head Blight Occurs
Guidelines for Minimizing the Risk of Mycotoxins in Warmer Growing Areas:
A Discussion
Conclusion
References

Chapter 16 Chemical Control of *Fusarium* Head Blight of Wheat
Ákos Mesterházy
Introduction
Factors Influencing Fungicide Effect
Inoculum
Variety Resistance—Host Plant Traits
Climatic Factors
Yield Potential
Fungicides
Management Inputs
Conclusions
References

Chapter 17 Predicting Mycotoxin Contamination in Wheat
Erick de Wolf and Pierce A. Paul
Introduction
Why Try to Predict Mycotoxin Contamination in Wheat?
Using Visual Estimates of *Fusarium* Head Blight or *Fusarium* Head Blight Prediction Models to Predict Deoxynivalenol Contamination
Comparison of Models Used to Predict *Fusarium* Head Blight and Deoxynivalenol Accumulation
Application of Prediction Models
Challenges in Developing Mycotoxin Prediction Models
Challenges in the Application of Mycotoxin Prediction Models
The Future of Modeling Mycotoxins in Wheat
Conclusions
Acknowledgments
References

Chapter 18 Good Postharvest Storage Practices for Wheat Grain
Naresh Magan, David Aldred, and Esther S. Baxter
Introduction
Moisture Sorption Curves
Risks of Deoxynivalenol Contamination during Grain Storage

CONTENTS

Mycotoxins in Maize 312
Fusarium Ear Rot of Maize 312
Aspergillus Ear Rot 314
Ecology and Modeling 315
Global Crop Distribution and Meteorological Conditions 318
Global Risk Maps for Mycotoxins in Wheat and Maize 319
Risk Maps for Mycotoxins in Wheat and Maize 321
Closing Comments 323
Acknowledgments 324
References 324

Index 327
List of Contributors

David Aldred
Applied Mycology Group
Cranfield Health
Cranfield University
Bedford, UK
e-mail: d.aldred@cranfield.ac.uk

Paola Battilani
Institute of Entomology and Plant Pathology
Università Cattolica del Sacro Cuore
Piacenza, Italy
e-mail: paola.battilani@unicatt.it

Esther S. Baxter
Applied Mycology Group
Cranfield Health
Cranfield University
Bedford, UK
e-mail: e.baxter@cranfield.ac.uk

Gérard Bertin
Erawan Consulting SARL
Asnières-sur-Seine, France
e-mail: erawan.consulting@gmail.com

Deepak Bhatnagar
Food and Feed Safety Research
Southern Regional Research Center
USDA-ARS
New Orleans, Louisiana, USA
e-mail: deepak.bhatnagar@ars.usda.gov

Andreia Bianchini
Department of Food Science and Technology
University of Nebraska–Lincoln
Lincoln, Nebraska, USA
e-mail: abianchini2@unl.edu

Lloyd B. Bullerman
Department of Food Science and Technology
University of Nebraska–Lincoln
Lincoln, Nebraska, USA
e-mail: lbullerman1@unl.edu