Spectrochemical Analysis using Infrared Multichannel Detectors

Edited by

Rohit Bhargava
Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL 61801 USA

And

Ira W. Levin
Laboratory of Chemical Physics, NIDDK National Institutes of Health Bethesda, MD 20892 USA
Spectrochemical Analysis using Infrared Multichannel Detectors
Analytical Chemistry Series

*Series Editors*: John M. Chalmers and Alan J. Handley

A series which presents the current state of the art in chosen sectors of analytical chemistry. Written at professional and reference level, it is directed at analytical chemists, environmental scientists, food scientists, pharmaceutical scientists, earth scientists, petrochemists and polymer chemists. Each volume in the series provides an accessible source of information on the essential principles, instrumentation, methodology and applications of a particular analytical technique.

**Titles in the series:**

**Inductively Coupled Plasma Spectrometry and its Applications**
Edited by S.J. Hill

**Extraction Methods in Organic Analysis**
Edited by A.J. Handley

**Design and Analysis in Chemical Research**
Edited by R.L. Tranter

**Spectroscopy in Process Analysis**
Edited by J.M. Chalmers

**Gas Chromatographic Techniques and Applications**
Edited by A.J. Handley and E.R. Adlard

**Chemical Analysis of Contaminated Land**
Edited by K.C. Thompson and C.P. Nathanail

**Atomic Spectroscopy in Elemental Analysis**
Edited by M. Cullen

**Pharmaceutical Analysis**
Edited by D.C. Lee and M. Webb

**Environmental Toxicity Testing**
Edited by K.C. Thompson, K. Wadhia and A.P. Leibner

**Spectrochemical Analysis using Infrared Multichannel Detectors**
Edited by R. Bhargava and I.W. Levin
Spectrochemical Analysis using Infrared Multichannel Detectors

Edited by

Rohit Bhargava
Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana, IL 61801 USA

And

Ira W. Levin
Laboratory of Chemical Physics, NIDDK National Institutes of Health Bethesda, MD 20892 USA
## Contents

**Contributors**

**Preface**

1. Fourier transform mid-infrared spectroscopic imaging  
   Rohit Bhargava and Ira W. Levin
   1.1 Introduction 1  
   1.2 Fundamentals of FTIR spectroscopy 1  
     1.2.1 Interferometer characteristics 2  
   1.3 FTIR microspectroscopy using a single-element detector 8  
     1.3.1 IR microscopes and point spectroscopy 8  
     1.3.2 FTIR mapping 11  
     1.3.3 Limitations of FTIR point mapping 11  
   1.4 FTIR imaging with multichannel detectors 13  
     1.4.1 Imaging with large format array detectors 13  
     1.4.2 Interfacing an interferometer to large array detectors 15  
     1.4.3 The SNR of imaging spectrometers 16  
     1.4.4 The evolving detector array technology 19  
   1.5 Raster scanning with linear array detectors 20  
     1.5.1 Choice of either small or large detector arrays 21  
   1.6 Conclusions 22  
   References 23

2. Near-infrared spectral imaging with focal plane array detectors  
   E. Neil Lewis, Linda H. Kidder, Eunah Lee and Kenneth S. Haber
   2.1 Background: single-point near-infrared spectroscopy 25  
   2.2 Development of NIR spectral imaging 27  
     2.2.1 History of spectral imaging 27  
     2.2.2 FPAs – specifications 28  
     2.2.3 Implementation of NIR imaging 29  
     2.2.4 Data processing 31  
     2.2.5 Comparison of vibrational spectroscopic imaging modalities 33  
     2.2.6 Safety in numbers 35
# CONTENTS

2.3 Examples of NIR spectral imaging capabilities 37  
2.3.1 Sample statistics and FOV 37  
2.3.2 High-throughput applications 42  
2.3.3 Statistics, morphology, abundance – using an internal reference 43  
2.4 Conclusions 51  
References 52  

3 Multichannel detection with a synchrotron light source: design and potential 56  
G. Larry Carr, Oleg Chubar and Paul Dumas  
3.1 Introduction 56  
3.2 Comparisons of thermal and SR sources 58  
3.2.1 Blackbody radiation 59  
3.2.2 SR as an IR source 59  
3.3 The IR microspectrometer: instrumentation and optical analysis 68  
3.3.1 Microspectrometer system components 68  
3.3.2 Performance: imaging at the diffraction limit 72  
3.3.3 The FPA microscope system 77  
3.4 Combining SR with an FPA microspectrometer 80  
3.4.1 FPA microspectrometer for PSF image deconvolution 80  
3.4.2 SR as an extended IR source 81  
3.5 Summary 82  
Acknowledgements 83  
References 83  

4 Multivariate analysis of infrared spectroscopic image data 85  
Scott W. Huffman and Chris W. Brown  
4.1 Introduction 85  
4.2 Preprocessing hyperspectral images 85  
4.2.1 Data compression 86  
4.2.2 Smoothing spectra 90  
4.2.3 Noise in hyperspectral images 92  
4.3 Processing hyperspectral images 101  
4.3.1 Feature extraction 101  
4.3.2 Concentration image maps 109  
4.4 Conclusions 113  
References 113  

5 FTIR imaging of multicomponent polymers 115  
Jack L. Koenig  
5.1 Introduction 115
5.2 Imaging requirements for polymer characterization 115
5.3 Polymer sampling for FTIR imaging 116
  5.3.1 Transmission measurements 116
  5.3.2 Reflection FTIR imaging measurements 118
  5.3.3 ATR FTIR imaging 119
5.4 FTIR image analysis 121
  5.4.1 Selection of characteristic spectral stains for each component 122
  5.4.2 Construction of contour plots 122
  5.4.3 Histograms 123
5.5 Applications of FTIR imaging to complex polymer systems 126
  5.5.1 FTIR imaging of polymer laminate films 126
  5.5.2 Chemical morphology of multi-component polymeric materials 126
  5.5.3 Immiscible polymer blends 132
  5.5.4 Crosslinking-induced phase separation of elastomers 135
  5.5.5 Semicrystalline polymer systems 137
  5.5.6 Semicrystalline polymer blends 139
5.6 Summary and conclusions 140
References 140

6 Combinatorial approaches to catalyst development with multichannel detectors 143
Christopher M. Snively and Jochen Lauterbach
6.1 Introduction – combinatorial materials development 143
6.2 Array detection schemes for high-throughput analysis 145
6.3 FTIR imaging as a high-throughput technique 146
6.4 Applications 148
  6.4.1 Application I: resin-supported ligands 148
  6.4.2 Application II: adsorbates on catalyst surfaces 149
  6.4.3 Application III: reactor effluent quantification 150
6.5 Data management 151
6.6 Summary 155
References 156

7 Materials analysis systems based on real-time near-IR spectroscopic imaging 158
Martin Kraft, Raimund Leitner and Herwig Mairer
7.1 Introduction 158
7.2 Data acquisition 158
  7.2.1 Image acquisition 158
  7.2.2 Sample–radiation interaction 161
7.3 Instrumentation 162
7.4 Real-time data analysis 164
  7.4.1 Pre-processing 165
  7.4.2 Spectral data evaluation 166
7.5 Integrated image processing 168
7.6 Material analysis applications 169
  7.6.1 Industrial waste classification and sorting 169
  7.6.2 Surface coating inspection 172
  7.6.3 Food control 172
  7.6.4 Mineralogical material analysis 172
References 173

8 Industrial applications of near-IR imaging 175
Anthony E. Dowrey, Gloria M. Story and Curtis Marcott
8.1 Introduction 175
8.2 Experimental 177
8.3 Application using NIR spectroscopic imaging 178
  8.3.1 Water migration on fabrics 178
  8.3.2 Spray nozzle patterns 179
  8.3.3 Surfactant deposition on a nonwoven substrate 179
  8.3.4 Flavored chips 181
  8.3.5 Lotion distribution on nonwoven paper 182
8.4 Conclusions 184
Acknowledgements 187
References 188

9 IR spectroscopic imaging 189
Max Diem, Melissa J. Romeo, Susie Boydston-White and
Christian Matthäus
9.1 Introduction: definition and goals of spectral mapping 189
9.2 Experimental 190
  9.2.1 Instrumental aspects: PE Spotlight 300 190
  9.2.2 Samples 191
  9.2.3 Spectral maps of individual cells 191
  9.2.4 Spectral maps of ‘smears’ 192
  9.2.5 Spectral maps of tissues 193
  9.2.6 Mathematical analysis 193
9.3 Results and discussion 194
  9.3.1 Spectral histopathology of lymph nodes 194
  9.3.2 Spectral maps of individual cells 197
  9.3.3 Spectral maps of ‘cell smears’ 200
9.4 Conclusions 202
Acknowledgements 202
References 202
10 FPA imaging and spectroscopy for monitoring chemical changes in tissue

Bayden R. Wood and Don McNaughton

10.1 Introduction

10.2 Applications of FTIR tissue imaging to cervical cancer

10.2.1 History of FTIR spectroscopy applied to cervical cancer diagnosis

10.2.2 FTIR point-to-point mapping of cervical tissue

10.2.3 FTIR focal plane array imaging of cervical tissue

10.3 FPA imaging and spectroscopy for monitoring chemical changes associated with collagen-induced arthritis

10.4 Application of FTIR 3D imaging to histology

10.5 Conclusions

Acknowledgements

References

11 Infrared microscopy and imaging of hard and soft tissues

Richard Mendelsohn, Adele L. Boskey and Nancy P. Camacho

11.1 Introduction

11.2 IR imaging protocols

11.3 Applications of FTIR microscopy and imaging to tissues

11.3.1 Bone

11.3.2 Skin

11.3.3 Cartilage

Acknowledgements

References

12 Mid-infrared imaging applications in agricultural and food sciences

Douglas L. Elmore, Carrie A. Lendon, Sean A. Smith and Chad L. Leverette

12.1 Introduction

12.2 Spatially resolved chemical and physical information

12.3 Chemical infrared imaging of protein, carbohydrates and fat in agri-food mixtures

12.4 Sampling

12.5 Chemometrics

12.6 Applications

12.7 Complementary imaging techniques

12.8 Conclusions

References
13 Applications of near-infrared imaging for monitoring agricultural food and feed products

Vincent Baeten and Pierre Dardenne

13.1 Introduction

13.2 Use of NIR imaging for remote control and monitoring in agriculture

13.2.1 The problem

13.3 NIR imaging for food analysis

13.3.1 The problem

13.4 NIR imaging for feed analysis

13.4.1 The problem

13.5 Conclusion

References

Index
Contributors

Dr Vincent Baeten
Département Qualité des Produits Agricoles, Centre Wallon de Recherches Agronomiques, 24 Chaussée de Namur, 5030 – Gembloux, Belgium

Professor Rohit Bhargava
Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA

Dr Adele L. Boskey
Mineralized Tissues Laboratory, The Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA

Dr Susie Boydston-White
Department of Chemistry and Biochemistry, Hunter College and Graduate School, City University of New York, New York, NY 10021, USA

Professor Chris W. Brown
Department of Chemistry, University of Rhode Island, Pastore Hall, Kingston RI 02881, USA

Dr Nancy P. Camacho
The Musculoskeletal Imaging and Spectroscopy Laboratory, The Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021, USA

Dr G. Larry Carr
National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, 75 Brookhaven Avenue, Bldg 725B, Upton, NY 11973-5000, USA
Dr Oleg Chubar  LURE and Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-Sur-Yvette Cedex, France

Dr Pierre Dardenne  Département Qualité des Produits Agricoles, Centre Wallon de Recherches Agronomiques, 24 Chaussée de Namur, 5030 – Gembloux, Belgium

Professor Max Diem  Department of Chemistry and Biochemistry, Hunter College and Graduate School, City University of New York, New York, NY 10021, USA

Mr Anthony E. Dowrey  The Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45253-8707, USA

Dr Paul Dumas  LURE and Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-Sur-Yvette Cedex, France

Dr Douglas L. Elmore  Scientific Resources Center, Cargill Incorporated, 7101 Goodlett Farms Parkway, Cordova, TN 38016, USA

Dr Kenneth S. Haber  Spectral Dimensions Inc, 3416 Olandwood Court, Suite 210, Olney, MD 20832, USA

Dr Scott W. Huffman  Laboratory of Chemical Physics, NIDDK, Building 5, B1-38, National Institutes of Health, Bethesda, MD 20892-0520, USA

Dr Linda H. Kidder  Spectral Dimensions Inc, 3416 Olandwood Court, Suite 210, Olney, MD 20832, USA

Professor Jack L. Koenig  Department of Macromolecular Science, Case Western Reserve University, Kent Hale Smith Building, Room 212, 2100 Adelbert Road, Cleveland, Ohio 44106-7202, USA
Dr Martin Kraft  
Carinthian Tech Research AG, Europastrasse 4/1, A - 9524 Villach / St. Magdalen, Austria

Professor Jochen Lauterbach  
Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA

Dr Eunah Lee  
Spectral Dimensions Inc., 3416 Olandwood Court, Suite 210, Olney, MD 20832, USA

Dr Raimund Leitner  
Carinthian Tech Research AG, Europastrasse 4/1, A - 9524 Villach / St. Magdalen, Austria

Dr Carrie A. Lendon  
Scientific Resources Center, Cargill Incorporated, 7101 Goodlett Farms Parkway, Cordova, TN 38016, USA

Dr Chad L. Leverette  
Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC 29801-6399, USA

Dr Ira W. Levin  
Building 5, B1-32, Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD 20892-0520, USA

Dr E. Neil Lewis  
Spectral Dimensions Inc., 3416 Olandwood Court, Suite 210, Olney, MD 20832, USA

Dr Herwig Mairer  
Carinthian Tech Research AG, Europastrasse 4/1, A - 9524 Villach / St Magdalen, Austria

Dr Christian Matthäus  
Department of Chemistry and Biochemistry, Hunter College and Graduate School, City University of New York, New York, NY 10021, USA

Professor Don McNaughton  
School of Chemistry, PO Box 23, Monash University, Melbourne, Victoria 3800, Australia