Sour Gas and Related Technologies
Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Sour Gas and Related Technologies

Edited by
Ying (Alice) Wu
Sphere Technology Connection, Canada

John J. Carroll
Gas Liquids Engineering, Canada

and

Weiyao Zhu
University of Science & Technology
Beijing, China
Contents

Preface xiii
Introduction xiv

Part 1: Data: Experiments and Correlation

1. Equilibrium Water Content Measurements for Acid Gas at High Pressures and Temperatures 3
 Francis Bernard, Robert A. Marriott, and Binod R. Giri
 1.1 Introduction 4
 1.2 Experimental 6
 1.3 Recent Results and Modelling 10
 1.3.1 Partitioning of Hydrogen Sulfide (H₂S Solubility in Water) 11
 1.3.2 Partitioning of Water (Water Content in H₂S) 15
 1.3.3 Discussion of Results 16
 1.4 Conclusions 19
 References 19

2. Comparative Study on Gas Deviation Factor Calculating Models for CO₂ Rich Gas Reservoirs 21
 Nan Zhang, Xiao Guo, Qiang Zhang, Rentian Yan, and Yan Ran
 2.1 Introduction 22
 2.2 Deviation Factor Correlations 22
 2.2.1 Empirical Formulas 23
 2.2.1.1 Dranchuk-Purvis-Robinson (DPR) Model 23
 2.2.1.2 Dranchuk-Abu-Kassem (DAK) Model 24
 2.2.1.3 Hall-Yarborough (HY) Model 24
2.2.1.4 Beggs and Brill (BB) Model
2.2.1.5 Sarem Model
2.2.1.6 Papay Model
2.2.1.7 Li Xiangfang (LXF) Model
2.2.1.8 Zhang Guodong Model

2.2.2 Correction Methods
2.2.2.1 Guo Xuqiang Method
2.2.2.2 Carr-Kobayshi-Burrows Correction Method
2.2.2.3 Wichert-Aziz Correction Method

2.3 Model Optimization
2.4 Conclusions
References

3. \(\text{H}_2\text{S} \) Viscosities and Densities at High-Temperatures and Pressures

Binod R. Giri, Robert A. Marriott, and Pierre Blais

3.1 Introduction
3.2 Experimental
3.3 Results and Discussion
3.4 Conclusions and Outlook
3.5 Acknowledgement
References

4. Solubility of Methane in Propylene Carbonate

Fang-Yuan Jou, Kurt A.G. Schmidt, and Alan E. Mather

4.1 Introduction
4.2 Results and Discussion
4.3 Nomenclature
4.4 Acknowledgement
References

5. A Holistic Look at Gas Treating Simulation

Nathan A. Hatcher, R. Scott Alvis, and Ralph H. Weiland

5.1 Introduction
5.2 Clean Versus Dirty Solvents: Heat Stable Salts

Part 2: Process
Contents

5.2.1 CO\textsubscript{2} Removal Using MEA, and MDEA Promoted With Piperazine 67
5.2.2 Piperazine-promoted MDEA in an Ammonia Plant 68
5.2.3 Post-combustion CO\textsubscript{2} Capture 70
5.2.4 LNG Absorber 74
5.3 Summary 77

6. Controlled Freeze ZoneTM Commercial Demonstration Plant Advances Technology for the Commercialization of North American Sour Gas Resources 79
R.H. Oelfke, R.D. Denton, and J.A. Valencia
6.1 Introduction – Gas Demand and Sour Gas Challenges 80
6.2 Acid Gas Injection 80
6.3 Controlled Freeze ZoneTM — Single Step Removal of CO\textsubscript{2} and H\textsubscript{2}S 81
6.4 Development Scenarios Suitable for Utilizing CFZTM Technology 84
6.5 Commercial Demonstration Plant Design & Initial Performance Data 86
6.6 Conclusions and Forward Plans 89
Bibliography 89

7. Acid Gas Dehydration – A DexProTM Technology Update 91
Jim Maddocks, Wayne McKay, and Vaughn Hansen
7.1 Introduction 91
7.2 Necessity of Dehydration 92
7.3 Dehydration Criteria 94
7.4 Acid Gas – Water Phase Behaviour 96
7.5 Conventional Dehydration Methods 99
7.5.1 Desiccant Adsorption 100
7.5.2 Desiccant Absorption 100
7.5.3 Separation Based Processes 103
7.5.4 Avoidance Based Processes 103
7.5.5 Thermodynamic/Refrigerative Based Processes 103
7.6 Development of DexPro 107
7.7 DexPro Operating Update 112
7.8 DexPro Next Steps 113
Contents

7.9 Murphy Tupper – 2012 Update 113
7.10 Acknowledgements 115

8. A Look at Solid CO₂ Formation in Several High CO₂ Concentration Depressuring Scenarios 117
James van der Lee, John J. Carroll, and Marco Satyro

8.1 Introduction 117
8.2 Methodology 118
8.3 Thermodynamic Property Package Description 118
8.4 Model Configuration 119
8.5 Results 121
8.6 Discussion 124
8.6.1 20 bar 124
8.6.1.1 Vapour Blow Down 124
8.6.1.2 Liquid Blow Down 125
8.6.2 40 bar 125
8.6.2.1 Vapour Blow Down 125
8.6.2.2 Liquid Blow Down 125
8.6.3 60 bar 125
8.6.3.1 Vapour Blow Down 125
8.6.3.2 Liquid Blow Down 127
8.7 Conclusions 127
References 128

Part 3: Acid Gas Injection

9. Potential Sites and Early Opportunities of Acid Gas Re-injection in China 131
Qi Li, Xiaochun Li, Lei Du, Guizhen Liu, Xuehao Liu, Ning Wei

9.1 Introduction 132
9.2 Potential Storage Capacity for CCS 134
9.3 Emission Sources of Acid Gases 134
9.4 Distribution of High H₂S Bearing Gas Field 135
9.5 Systematic Screening of Potential Sites 136
9.6 Early Deployment Opportunities of AGI 137
9.7 Conclusions 139
9.8 Acknowledgements 140
References 140
10. Acid Gas Injection for a Waste Stream with Heavy Hydrocarbons and Mercaptans 143
Xingyuan Zhao, John J. Carroll, and Ying Wu
10.1 Basis 143
10.2 Phase Envelope 144
10.3 Water Content 146
10.4 Hydrates 147
10.5 Dehydration and Compression 149
10.6 Discussion 151
10.7 Conclusion 151
References 152

11. Compression of Acid Gas and CO₂ with Reciprocating Compressors and Diaphragm Pumps for Storage and Enhanced Oil Recovery 153
Anke Braun, Josef Jarosch, Rainer Dübi, and Luzi Valär
11.1 Conclusion 163
References 164

12. Investigation of the Use of Choke Valves in Acid Gas Compression 165
James van der Lee, and Edward Wichert
12.1 Introduction 166
12.2 Water Content Behaviour of Acid Gas 167
12.3 Test Cases to Ascertain the Effect of Choke Valves 169
12.4 Test Case 1: 20% H₂S, 78% CO₂ and 2% C₁ 170
12.5 Test Case 2: 50% H₂S, 48% CO₂ and 2% C₁ 173
12.6 Test Case 3: 80% H₂S, 18% CO₂ and 2% C₁ 175
12.7 Conclusions 180

13. The Kinetics of H₂S Oxidation by Trace O₂ and Prediction of Sulfur Deposition in Acid Gas Compression Systems 183
N. I. Dowling, R. A. Marriott, A. Primak, and S. Manley
13.1 Introduction 184
13.2 Experimental 185
13.3 Experimental Results and Calculation Methods 186
Contents

13.3.1 **Determination of the Kinetics of H₂S Oxidation** 186

13.3.2 **Thermodynamic Model for Sulfur Solubility** 198

13.3.2.1 **Pure Sulfur Phases** 202

13.3.2.2 **Liquid Sulfur Under Sour Gas Pressure** 203

13.3.2.3 **Fugacity of S₈ in a Sour Gas or Acid Gas Phase** 204

13.4 **Discussion and Demonstration of Utility** 208

13.5 **Conclusions** 212

References 213

14. **Blowout Calculations for Acid Gas Well with High Water Cut** 215

Shouxi Wang, and John J. Carroll

14.1 **Introduction** 215

14.2 **Water** 217

14.2.1 **Case Study 1** 218

14.2.1.1 **Isothermal** 218

14.2.1.2 **Linear Temperature** 218

14.2.1.3 **Actual Temperature Profiles** 219

14.2.1.4 **Reservoir Pressure** 220

14.2.2 **Effect of Tubing Diameter** 221

14.3 **Trace Amount of Gas** 221

14.3.1 **Case Study 2** 222

14.4 **Break-Out Gas** 222

14.4.1 **Case Study 3** 222

14.5 **Brine vs. Water** 226

14.6 **Discussion** 226

References 226

Part 4: Subsurface

15. **Influence of Sulfur Deposition on Gas Reservoir Development** 229

Weiyao Zhu, Xiaohue Huang, Yunqian Long, and Jia Deng

15.1 **Introduction** 229

15.2 **Mathematical Models of Flow Mechanisms** 230
15.2.1 Mathematical Model of Sulfur Deposition 230
15.2.2 Thermodynamics Model of Three-phase Equilibrium 231
15.2.3 Equation of State 234
15.2.4 Solubility Calculation Model 234
15.2.5 Influence Mathematical Model of Sulfur Deposition Migration to Reservoir Characteristics 235

15.3 The Mathematical Model of Multiphase Complex Flow 236
15.3.1 Basic Supposition 236
15.3.2 The Mathematical Model of Gas-liquid-solid Complex Flow in Porous Media 237
15.3.2.1 Flow Differential Equations 237
15.3.2.2 Unstable Differential Equations of Gas-liquid-solid Complex Flow 238
15.3.2.3 Relationship between Saturation and Pressure of Liquid Phase 239
15.3.2.4 Auxiliary Equations 240
15.3.2.5 Definite Conditions 240

15.4 Solution of the Mathematical Model Equations 240
15.4.1 Definite Output Solutions 240
15.4.2 Productivity Equation 242

15.5 Example 242
15.6 Conclusions 244

References 245

Jie Zhang, Ayodeji A. Jeje, Gang Chen, Haiying Cheng, Yuan You, and Shugang Li

16.1 Introduction 248
16.2 Treatment of Produced Water 249
16.2.1 Experiments 249
16.2.2 Test Methods 250
16.2.3 Results 251

16.3 Treatment of Re-circulating Mud 252
16.3.1 Test Facility 252
16.3.2 Test Methods 253
16.3.3 Analysis of Test Results 253
16.4 Test on Gas-cut, Water-based Mud
 16.4.1 Test Facility
 16.4.2 Test Method
 16.4.3 Test Results
16.5 Conclusion
References

17. Optimization of the Selection of Oil-Soluble Surfactant for Enhancing CO₂ Displacement Efficiency

Ping Guo, Songjie Jiao, Fu Chen, and Jie He
17.1 Introduction
17.2 Experiment Preparation and Experimental Conditions
 17.2.1 Experiment Preparation
 17.2.2 Experimental Conditions
17.3 Experiment Contents and Methods
17.4 Optimization of Surfactants
 17.4.1 Oil-soluble Determination of Surfactant CAE
 17.4.2 The Solubility Evaluation of CAE and CAF in Supercritical CO₂
 17.4.3 The Viscosity Reduction Evaluation of CAE and CAF
 17.4.4 The Displacement Efficiency Contrast of CAE and CAF
17.5 The Displacement Efficiency Research on Oil-soluble Surfactant Optimization
 17.5.1 The Optimization of Surfactant Flooding Pattern
 17.5.2 The Slug Flooding Optimization of Different Surfactant Concentration
17.6 Conclusions and Recommendations
17.7 Acknowledgement
References

Index
The Third International Acid Gas Injection Symposium (AGIS) was held in Banff, Canada in mid-2012. Papers covering many aspects of sour gas in general, and the injection of acid gas in particular, were presented. Sour gas, as described in the Introduction, is natural gas that contains significant amounts of hydrogen sulfide, whereas acid gas is a mixture of hydrogen sulfide and carbon dioxide.

Closely related to the field of sour gas are carbon capture and storage and the use of carbon dioxide for enhanced oil recovery. These are also topics discussed at AGIS.

This new volume is a collection of the papers from the third AGIS covering the topics of sour gas and acid gas, including carbon dioxide. We are grateful to all of the authors whose papers appear in this volume. We would also like to thank all who participated in AGIS, as presenters, attendees, and sponsors.

Ying (Alice) Wu
John J. Carroll
Calgary, Canada