SOLID-PHASE ORGANIC SYNTHESIS
Preface xv
Acknowledgments xvii
Contributors xix

Part I CONCEPTS AND STRATEGIES 1

1 LINKER STRATEGIES IN MODERN SOLID-PHASE ORGANIC SYNTHESIS 3
Peter J. H. Scott

1.1 Introduction 3
1.2 Classical Linker Strategies 5
 1.2.1 Acid and Base Cleavable Linker Units 5
 1.2.2 Cyclorelease Linker Units 14
 1.2.3 Traceless Linker Units 18
 1.2.4 Photolabile Linker Units 21
 1.2.5 Safety-Catch Linker Units 24
1.3 Multifunctional Linker Strategies 28
 1.3.1 Nitrogen Linker Units 28
 1.3.1.1 Triazene Linker Units 28
 1.3.1.2 Hydrazone Linker Units 32
 1.3.1.3 Benzotriazole Linker Units 34
 1.3.2 Sulfur Linker Units 37
 1.3.3 Phosphorus Linker Units 47
 1.3.4 Selenium and Tellurium Linker Units 51
 1.3.5 Silyl and Germyl Linker Units 54
 1.3.6 Boron and Stannane Linker Units 63
 1.3.7 Bismuth Linker Units 64
 1.3.8 Alkene Linker Units 69
1.4 Conclusions 73

References 73

2 COLORIMETRIC TEST FOR SOLID-PHASE ORGANIC SYNTHESIS 83
Yan Teng and Patrick H. Toy

2.1 Introduction 83
2.2 Functional Group Tests 84
 2.2.1 Amine Groups 84
 2.2.1.1 Ninhydrin (Kaiser) Test 84
2.2.1.2 TNBSA Test 84
2.2.1.3 Bromophenol Blue Test 84
2.2.1.4 Chloranil Test 85
2.2.1.5 DABITC Test 85
2.2.1.6 MGI Test 85
2.2.1.7 Isatin Test 85
2.2.1.8 DESC Test 86
2.2.1.9 NPIT Test 86
2.2.1.10 NF31 Test 86
2.2.1.11 Nondestructive NF31 Test 87
2.2.1.12 Naphthol Test 87
2.2.1.13 2-Amino-3-chloro-1,4-naphthoquinone Test 87
2.2.2 Alcohols 87
 2.2.2.1 PNBP Test 88
 2.2.2.2 TCT–AliR and TCT–Fluorescein Test 88
 2.2.2.3 Diphenyldichlorosilane–Methyl Red Test 88
 2.2.2.4 9-Anthronylnitrile Test 89
 2.2.2.5 NMA Test 89
 2.2.2.6 Protecting Group NPB Test 89
 2.2.2.7 Methyl Red/DIC Test 90
 2.2.2.8 Other Methods 90
2.2.3 Thiol Groups 90
 2.2.3.1 Ellman’s Test 90
 2.2.3.2 Other Methods 90
2.2.4 Halogen Groups 90
 2.2.4.1 Fluorescein Test 90
 2.2.4.2 Other Methods 91
2.2.5 Carboxylic Acid Groups 91
 2.2.5.1 Malachite Green Test 91
 2.2.5.2 PDAM Test 91
2.2.6 Aldehyde and Ketone Groups 91
 2.2.6.1 Fluorescent Dansylhydrazine Test 91
 2.2.6.2 p-Anisaldehyde Test 92
 2.2.6.3 Purpald Test 92

2.3 Conclusions 92
References 92

3 PRACTICAL ASPECTS OF COMBINATORIAL SOLID-PHASE SYNTHESIS 95

Jan Hlaváč, Miroslav Soral, and Viktor Krchňák

3.1 Introduction 95
 3.1.1 What Is Combinatorial Chemistry 96
 3.1.2 What Is Not Combinatorial Chemistry 97
 3.1.3 History of Combinatorial Chemistry: Breakthrough Discoveries That Shaped the Future of the Combinatorial Chemistry Field 98
 3.1.3.1 Solid-Phase Synthesis 98
 3.1.3.2 Pooling Strategy 99
 3.1.3.3 Parallel Synthesis 99
3.2 Strategies in Combinatorial Solid-Phase Synthesis

3.2.1 Random Split-and-Pool Method

3.2.1.1 One-Bead–One-Compound Concept

3.2.1.2 Encoding Methods for the OBOC Technique

3.2.1.3 Organized Mixtures

3.2.2 Directed Split-and-Pool Method in Practice

3.2.2.1 Formulation of Solid-Phase Supports for the Directed Split-and-Pool Technique

3.2.2.2 Chemical History of the Resin Formulations

3.3 Equipment and Instrumentation

3.3.1 Manual Solid-Phase Synthesis

3.3.2 Integrated Semiautomated Synthesis

3.3.3 Fully Automated Synthesizers (Gone with the Wind)

3.3.4 Instruments for Sorting

3.4 Characterization and Purification

3.5 Conclusions

Acknowledgments

References

4 DIVERSITY-ORIENTED SYNTHESIS

Kieron M. G. O’Connell, Warren R. J. D Galloway, Brett M. Ibbeson, Albert Isidro-Llobet, Cornelius J. O’Connor, and David R. Spring

4.1 Introduction

4.2 Small Molecules and Biology

4.3 Diversity-Oriented Synthesis, Target-Oriented Synthesis, and Combinatorial Chemistry

4.4 Molecular Diversity

4.4.1 Molecular Diversity and Chemical Space

4.4.2 Synthetic Strategies for Creating Molecular Diversity

4.5 Diversity-Oriented Synthesis on Solid Phase

4.5.1 Reagent-Based Strategies

4.5.2 Substrate-Based Strategies

4.5.3 Build/Couple/Pair Strategies

4.6 Diversity-Oriented Synthesis Around Privileged Scaffolds

4.7 Diversity Linker Units in Solid-Phase Organic Synthesis

4.8 Conclusions

References

5 DIVERSITY-ORIENTED SYNTHESIS OF PRIVILEGED HETEROCYCLES USING DIVERGENT STRATEGY

Seung Bum Park and Jonghoon Kim

5.1 Introduction

5.2 Divergent Synthesis of Natural Product-Like Polyheterocycles Using a Cyclic Iminium as a Single Key Intermediate
5.2.1 Practical Solid-Phase Synthesis of Diaza-bridged Heterocycle and Tetrahydro-beta-carboline Through Intramolecular Pictet–Spengler Cyclization (Type I, II, and III) 155

5.2.1.1 Synthesis of Diaza-Bridged Heterocycles (Type I and II) 155

5.2.1.2 Synthesis of Tetrahydro-beta-carbolines (Type III) 158

5.2.2 Practical Solid-Phase Synthesis of 5-2-Oxopiperazines via N-Acyliminium Ion Cyclization (Type IV) 160

5.2.3 Novel Application of the Leuckart–Wallach Reaction for the Synthesis of a Tetrahydro-1,4-benzodiazepin-5-one Library (Type V) 164

5.3 Conclusions 168

References 168

6 CHEMO- AND REGIOSELECTIVITY ENHANCEMENT IN SOLID-SUPPORTED REACTIONS 171

Douglas D. Young and Alexander Deiters

6.1 Introduction 171

6.2 Transition Metal-Mediated Solid-Supported Reactions 172

6.2.1 Olefin Metathesis Reactions 172

6.2.1.1 Olefin Cross Metathesis 172

6.2.1.2 Ring-Closing Metathesis 176

6.2.1.3 Ring-Opening Metathesis 178

6.2.2 [2 + 2 + 2] Cyclotrimerization Reactions 180

6.2.3 Pauson–Khand Reactions 182

6.2.4 Miscellaneous Transition Metal-Mediated Reactions 183

6.2.4.1 Dötz Benzannulation Reactions 183

6.2.4.2 Cadiot–Chodkiewicz Coupling Reactions 184

6.2.4.3 Cyclopropanation Reactions 184

6.3 Non-transition Metal-Mediated Solid-Supported Reactions 186

6.3.1 Cycloaddition Reactions 186

6.3.2 Hydroxylation Reactions 189

6.3.3 Aldol Condensation Reactions 190

6.3.4 Radical Reactions 190

6.3.5 Oxidative Coupling Reactions 191

6.4 Traceless Cleavage 192

6.4.1 Cyclizative Cleavage 192

6.4.2 Cyclizative Immobilization 198

6.4.3 Chemoselective Cleavage 199

6.5 Conclusions 201

References 201
Part II Applications

7 ASYMMETRIC SYNTHESIS ON SOLID SUPPORT 207
 Baburaj Baskar and Kamal Kumar

7.1 Introduction 207
7.2 Asymmetric Chemical Transformations of Solid-Supported Substrates 208
 7.2.1 Asymmetric Aldol Reactions 208
 7.2.2 Asymmetric Allylation Reactions 211
 7.2.3 Enantioselective Cycloaddition Reactions 214
 7.2.4 Stereoselective Epoxide Ring-Opening Reactions 216
 7.2.5 Asymmetric Alkene Cyclopropanation Reactions 217
 7.2.6 Enantioselective Alkylation Reactions 218
7.3 Asymmetric Transformations Using Resin-Bound Chiral Catalysts and Auxiliaries 219
 7.3.1 Catalytic Asymmetric Synthesis with Resin-Bound Chiral Catalysts 219
 7.3.2 Asymmetric Synthesis Using Resin-Bound Chiral Auxiliaries 223
7.4 Conclusions 227
References 227

8 RECENT ADVANCES IN MICROWAVE-ASSISTED SOLID-PHASE SYNTHESIS OF HETEROCYCLES 231
 Prasad Appukkuttan, Vaibhav, P. Mehta, and Erik Van der Eycken

8.1 Introduction 231
8.2 Fused 1,3-oxazin-6-ones 232
8.3 Thiazolo[4,5-d]pyrimidine-5,7-diones 233
8.4 Pyrazoles 234
8.5 HSP70 Modulators 234
8.6 Benzimidazo[2,1-b]quinazolin-12(5H)-ones 236
8.7 Imidazoles 237
8.8 1,4-Naphthoquinones 238
8.9 Phthalocyanines 238
8.10 1,2,3,4-Tetrahydroquinolines 242
8.11 1,2,3-Triazoles 243
8.12 2,8-Diaminopurines 244
8.13 Imidazolidin-4-ones 245
8.14 Indoles 247
8.15 1,2,3,4-Tetrahydroquinolines Using a SmI₂-Cleavable Linker 248
8.16 Hydantoins 249
10.2.2 Solid-Phase Synthesis of 2,5,6,7-Tetrasubstituted Thiazolo[4,5-b]pyridines 323

10.2.3 Solid-Phase Synthesis of 2,4,6-Trisubstituted Thiazolo[4,5-d]pyrimidine-5,7-diones 324

10.2.4 Solid-Phase Synthesis of 1,3,6-Trisubstituted 1H-Thiazolo[4,5-c][1,2]thiazin-4(3H)one-2,2-dioxides 330

10.3 Solid-Phase Synthesis of Benzoxazoles 333

10.4 Solid-Phase Synthesis of Related Pyrazole Compounds and 1,3,4-Triazoles via a Dithiocarbazate Linker 334

10.4.1 Synthesis of a Dithiocarbazate Linker on Solid Support 334

10.4.2 Solid-Phase Synthesis of Pyrazoles via a Dithiocarbazate Linker 338

10.4.3 Solid-Phase Synthesis of Pyrazolo[1,5-a][1,3,5]-2-oxo-4-dithioxotriazines 338

10.4.4 Solid-Phase Synthesis of Pyrazolo[1,5-a][1,3,5]-2,4-dithioxotriazines 340

10.4.5 Solid-Phase Synthesis of 1,3,4-Triazoles 342

10.5 Solid-Phase Synthesis of 1,3,4-Oxadiazoles and 1,3,4-Thiadiazoles via Selective Cyclization 342

10.6 Solid-Phase Synthesis of 1,2,4-Thiadiazoles 347

10.7 Summary 350

References 350

11 RECENT ADVANCES IN SOLID-PHASE 1,3-DIPOLAR CYCLOADDITION REACTIONS 355

Kirs Harju and Jari Yli-Kauhaluoma

11.1 Introduction 355

11.2 Solid-Phase Synthesis of Pyrrolidines, Pyrrolines, and Pyrroles 356

11.3 Synthesis of Pyrazolines and Pyrazoles 361

11.4 Solid-Phase Synthesis of Imidazoles, 1,2,4-Triazoles, and 1,2,3-Triazoles 364

11.5 Solid-Phase Synthesis of Isoxazolidines, Isoxazolines, and Isoxazoles 369

11.6 Conclusions 378

References 378

12 SULFONES IN SOLID-PHASE HETEROCYCLE SYNTHESIS 383

Chai Hoon Soh and Yulin Lam

12.1 Introduction 383

12.2 Linkers 384

12.2.1 Sulfone Chemistry 384

12.2.2 Sulfone Linker Units 384

12.2.2.1 Preparation of Sulfone Linkers 384
12.2.2.2 Cleavage of Sulfone Linkers 386
12.2.2.3 Sulfone Linkers in Oligosaccharide Synthesis 409

12.3 Conclusions 411
References 411

13 SOLID-PHASE ORGANIC RADIOSYNTHESIS 415
Raphaël Hoareau and Peter J. H. Scott

13.1 Introduction 415
13.2 Solid-Phase Organic Radiosynthesis with Fluorine-18 416
 13.2.1 Radiolabeled Peptides with Fluorine-18 416
 13.2.2 Solid-Phase Organic Radiosynthesis of $[^{18}\text{F}]$FDG 417
 13.2.3 Fluorine-18 Displacement of Supported Aryliodonium 418
 13.2.4 Solid-Phase Organic Radiosynthesis of $^{18}\text{FCH}_2\text{Br}$ 419
 13.2.5 Solid-Phase Organic Radiosynthesis of $[^{18}\text{F}]$FluoroDOPA 419
 13.2.6 Solid-Phase Organic Radiosynthesis of β-Amyloid PET Tracers 419
 13.2.7 Solid-Phase Organic Radiosynthesis of Oncological PET Tracers 420
13.3 Solid-Phase Organic Radiosynthesis with Carbon-11 421
13.4 Solid-Phase Organic Radiosynthesis with Other Radioisotopes 422
 13.4.1 Solid-Phase Organic Radiosynthesis of Copper-64 Metalloradiopharmaceuticals 422
 13.4.2 Solid-Phase Radiosynthesis of $[^{131}\text{I}]$MIBG 424
13.5 Conclusions 424
References 424

14 SOLID-PHASE SYNTHESIS OF DYES AND THEIR APPLICATION AS SENSORS AND BIOIMAGING PROBES 427
Marc Vendrell, Hyung-Ho Ha, Sung Chan Lee, and Young-Tae Chang

14.1 Introduction 427
14.2 On-Bead Sensors 428
14.3 Solid-Phase Approaches in Fluorescent Labeling 429
14.4 Solid-Phase Derivatization of Fluorescent Scaffolds 430
14.5 Diversity-Oriented Fluorescent Libraries 433
14.6 Conclusions 437
14.7 Acknowledgments 437
References 437

15 DENDRITIC MOLECULES ON SOLID SUPPORT: SOLID-PHASE SYNTHESIS AND APPLICATIONS 441
Kerem Goren and Moshe Portnoy

15.1 Introduction 441
15.2 Synthesis 442
15.2.1 General Synthetic Schemes 442
15.2.2 Preparation of Polyamide Dendrons 444
 15.2.2.1 Polylsine Dendrons 444
 15.2.2.2 Dendrons Combining Natural and Artificial Amino Acids 445
 15.2.2.3 Dendrons Made of Artificial Amino Acids 447
 15.2.2.4 Polyamide Dendrons from Alternative Building Blocks 450
15.2.3 Preparation of Polyamidoamine Dendrons 451
15.2.4 Preparation of Polyurea Dendrons 453
15.2.5 Preparation of Polyester Dendrons 455
15.2.6 Preparation of Polyether Dendrons 455
15.2.7 Preparation of Polythioether Dendrons 458
15.2.8 Preparation of Polyamine Dendrons 458
15.2.9 Preparation of Dendrons Based on 1,3,5-Triazines 459
15.2.10 Preparation of Poly(arylacetylene) Dendrons 461
15.2.11 Coordination-Linked Dendrons 463
15.3 Applications of Dendronized Supports 464
 15.3.1 Dendronized Supports as Synthetic Intermediates 464
 15.3.2 High-Loading Dendronized Supports for Solid-Phase Synthesis 468
 15.3.3 Dendronized Supports for Multivalent Molecular Recognition 468
 15.3.4 Supported Dendritic Catalysts 470
 15.3.5 Dendronized Supports in Separation Processes 477
 15.3.6 Dendronized Surfaces for Immobilization of Biomacromolecules 479
 15.3.7 Other Applications 479
15.4 Conclusions 480
References 482

16 OLIGOSACCHARIDE SYNTHESIS ON SOLID, SOLUBLE POLYMER, AND TAG SUPPORTS 489
Katsunori Tanaka and Koichi Fukase

16.1 Introduction 489
16.2 Solid-Phase Methods for Synthesis of Oligosaccharides 490
 16.2.1 New Linkers and Protection Groups for Solid-Phase Synthesis of Oligosaccharides 490
 16.2.2 Application of Unique Glycosylation Methods in Solution to Solid-Phase Synthesis of Oligosaccharides 498
 16.2.3 Solid-Phase Synthesis of Complex Oligosaccharides 503
 16.2.4 Solid-Phase Methods for Purification of Synthesized Oligosaccharides 507
 16.2.5 Monitoring of Solid-Phase Reactions 512
16.3 Polymer-Supported and Tag-Assisted Oligosaccharide Synthesis in Solution 516