Robust Methods in Biostatistics

Stephane Heritier
The George Institute for International Health, University of Sydney, Australia

Eva Cantoni
Department of Econometrics, University of Geneva, Switzerland

Samuel Copt
Merck Serono International, Geneva, Switzerland

Maria-Pia Victoria-Feser
HEC Section, University of Geneva, Switzerland
Robust Methods in Biostatistics
WILEY SERIES IN PROBABILITY AND STATISTICS

Established by WALTER A. SHEWHART and SAMUEL S. WILKS

Editors
David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Iain M. Johnstone, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay, Sanford Weisberg, Harvey Goldstein.

Editors Emeriti
Vic Barnett, J. Stuart Hunter, Jozef L. Teugels

A complete list of the titles in this series appears at the end of this volume.
Robust Methods in Biostatistics

Stephane Heritier
The George Institute for International Health, University of Sydney, Australia

Eva Cantoni
Department of Econometrics, University of Geneva, Switzerland

Samuel Copt
Merck Serono International, Geneva, Switzerland

Maria-Pia Victoria-Feser
HEC Section, University of Geneva, Switzerland
To Anna, Olivier, Cassandre, Oriane, Sonia, Johannes, Véronique, Sébastien and Raphaël, who contributed in their ways...
Contents

Preface xiii
Acknowledgments xv

1 Introduction 1
1.1 What is Robust Statistics? 1
1.2 Against What is Robust Statistics Robust? 3
1.3 Are Diagnostic Methods an Alternative to Robust Statistics? ... 7
1.4 How do Robust Statistics Compare with Other Statistical Procedures in Practice? 11

2 Key Measures and Results 15
2.1 Introduction .. 15
2.2 Statistical Tools for Measuring Robustness Properties 16
 2.2.1 The Influence Function 17
 2.2.2 The Breakdown Point 20
 2.2.3 Geometrical Interpretation 20
 2.2.4 The Rejection Point 21
2.3 General Approaches for Robust Estimation 21
 2.3.1 The General Class of M-estimators 23
 2.3.2 Properties of M-estimators 27
 2.3.3 The Class of S-estimators 30
2.4 Statistical Tools for Measuring Tests Robustness 32
 2.4.1 Sensitivity of the Two-sample t-test 34
 2.4.2 Local Stability of a Test: the Univariate Case 34
 2.4.3 Global Reliability of a Test: the Breakdown Functions ... 37
2.5 General Approaches for Robust Testing 38
 2.5.1 Wald Test, Score Test and LRT 39
 2.5.2 Geometrical Interpretation 40
 2.5.3 General Ψ-type Classes of Tests 40
 2.5.4 Asymptotic Distributions 42
 2.5.5 Robustness Properties 43
3 Linear Regression

3.1 Introduction 45
3.2 Estimating the Regression Parameters 47
 3.2.1 The Regression Model 47
 3.2.2 Robustness Properties of the LS and MLE Estimators 48
 3.2.3 Glomerular Filtration Rate (GFR) Data Example 49
 3.2.4 Robust Estimators 50
 3.2.5 GFR Data Example (continued) 54
3.3 Testing the Regression Parameters 55
 3.3.1 Significance Testing 55
 3.3.2 Diabetes Data Example 58
 3.3.3 Multiple Hypothesis Testing 59
 3.3.4 Diabetes Data Example (continued) 61
3.4 Checking and Selecting the Model 62
 3.4.1 Residual Analysis 62
 3.4.2 GFR Data Example (continued) 62
 3.4.3 Diabetes Data Example (continued) 65
 3.4.4 Coefficient of Determination 66
 3.4.5 Global Criteria for Model Comparison 69
 3.4.6 Diabetes Data Example (continued) 75
3.5 Cardiovascular Risk Factors Data Example 78

4 Mixed Linear Models

4.1 Introduction 83
4.2 The MLM 84
 4.2.1 The MLM Formulation 84
 4.2.2 Skin Resistance Data 88
 4.2.3 Semantic Priming Data 89
 4.2.4 Orthodontic Growth Data 90
4.3 Classical Estimation and Inference 91
 4.3.1 Marginal and REML Estimation 91
 4.3.2 Classical Inference 94
 4.3.3 Lack of Robustness of Classical Procedures 96
4.4 Robust Estimation 97
 4.4.1 Bounded Influence Estimators 97
 4.4.2 S-estimators 98
 4.4.3 MM-estimators 100
 4.4.4 Choosing the Tuning Constants 102
 4.4.5 Skin Resistance Data (continued) 103
4.5 Robust Inference 104
 4.5.1 Testing Contrasts 104
 4.5.2 Multiple Hypothesis Testing of the Main Effects 106
 4.5.3 Skin Resistance Data Example (continued) 107
 4.5.4 Semantic Priming Data Example (continued) 107
 4.5.5 Testing the Variance Components 110
CONTENTS

4.6 Checking the Model 110
 4.6.1 Detecting Outlying and Influential Observations 110
 4.6.2 Prediction and Residual Analysis 112
4.7 Further Examples 116
 4.7.1 Metallic Oxide Data 116
 4.7.2 Orthodontic Growth Data (continued) 118
4.8 Discussion and Extensions 122

5 Generalized Linear Models 125
 5.1 Introduction 125
 5.2 The GLM 126
 5.2.1 Model Building 126
 5.2.2 Classical Estimation and Inference for GLM 129
 5.2.3 Hospital Costs Data Example 132
 5.2.4 Residual Analysis 133
 5.3 A Class of M-estimators for GLMs 136
 5.3.1 Choice of ψ and w(x) 137
 5.3.2 Fisher Consistency Correction 138
 5.3.3 Nuisance Parameters Estimation 139
 5.3.4 IF and Asymptotic Properties 140
 5.3.5 Hospital Costs Example (continued) 140
 5.4 Robust Inference 141
 5.4.1 Significance Testing and CIs 141
 5.4.2 General Parametric Hypothesis Testing and
 Variable Selection 142
 5.4.3 Hospital Costs Example (continued) 144
 5.5 Breastfeeding Data Example 146
 5.5.1 Robust Estimation of the Full Model 146
 5.5.2 Variable Selection 148
 5.6 Doctor Visits Data Example 151
 5.6.1 Robust Estimation of the Full Model 151
 5.6.2 Variable Selection 154
 5.7 Discussion and Extensions 158
 5.7.1 Robust Hurdle Models for Counts 158
 5.7.2 Robust Akaike Criterion 159
 5.7.3 General \(C_p \) Criterion for GLMs 159
 5.7.4 Prediction with Robust Models 160

6 Marginal Longitudinal Data Analysis 161
 6.1 Introduction 161
 6.2 The Marginal Longitudinal Data Model (MLDA) and Alternatives 163
 6.2.1 Classical Estimation and Inference in MLDA 164
 6.2.2 Estimators for \(\tau \) and \(\alpha \) 166
 6.2.3 GUIDE Data Example 169
 6.2.4 Residual Analysis 171
6.3 A Robust GEE-type Estimator .. 172
 6.3.1 Linear Predictor Parameters 172
 6.3.2 Nuisance Parameters 174
 6.3.3 IF and Asymptotic Properties 176
 6.3.4 GUIDE Data Example (continued) 177
6.4 Robust Inference ... 178
 6.4.1 Significance Testing and CIs 178
 6.4.2 Variable Selection 179
 6.4.3 GUIDE Data Example (continued) 180
6.5 LEI Data Example ... 182
6.6 Stillbirth in Piglets Data Example 186
6.7 Discussion and Extensions .. 189

7 Survival Analysis ... 191
 7.1 Introduction .. 191
 7.2 The Cox Model .. 193
 7.2.1 The Partial Likelihood Approach 193
 7.2.2 Empirical Influence Function for the PLE 196
 7.2.3 Myeloma Data Example 197
 7.2.4 A Sandwich Formula for the Asymptotic Variance 198
 7.3 Robust Estimation and Inference in the Cox Model 200
 7.3.1 A Robust Alternative to the PLE 200
 7.3.2 Asymptotic Normality 202
 7.3.3 Handling of Ties 204
 7.3.4 Myeloma Data Example (continued) 205
 7.3.5 Robust Inference and its Current Limitations 206
 7.4 The Veteran’s Administration Lung Cancer Data 209
 7.4.1 Robust Estimation 209
 7.4.2 Interpretation of the Weights 210
 7.4.3 Validation .. 212
 7.5 Structural Misspecifications 214
 7.5.1 Performance of the ARE 214
 7.5.2 Performance of the robust Wald test 216
 7.5.3 Other Issues .. 217
 7.6 Censored Regression Quantiles 217
 7.6.1 Regression Quantiles 217
 7.6.2 Extension to the Censored Case 219
 7.6.3 Asymptotic Properties and Robustness 220
 7.6.4 Comparison with the Cox Proportional Hazard Model ... 221
 7.6.5 Lung Cancer Data Example (continued) 222
 7.6.6 Limitations and Extensions 224
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendices</td>
<td>227</td>
</tr>
<tr>
<td>A Starting Estimators for (MM)-estimators of Regression Parameters</td>
<td>229</td>
</tr>
<tr>
<td>B Efficiency, LRT(\rho), RAIC and (RC \rho) with Biweight (\rho)-function for the Regression Model</td>
<td>231</td>
</tr>
<tr>
<td>C An Algorithm Procedure for the Constrained S-estimator</td>
<td>235</td>
</tr>
<tr>
<td>D Some Distributions of the Exponential Family</td>
<td>237</td>
</tr>
<tr>
<td>E Computations for the Robust GLM Estimator</td>
<td>239</td>
</tr>
<tr>
<td>E.1 Fisher Consistency Corrections</td>
<td>239</td>
</tr>
<tr>
<td>E.2 Asymptotic Variance</td>
<td>240</td>
</tr>
<tr>
<td>E.3 IRWLS Algorithm for Robust GLM</td>
<td>242</td>
</tr>
<tr>
<td>F Computations for the Robust GEE Estimator</td>
<td>245</td>
</tr>
<tr>
<td>F.1 IRWLS Algorithm for Robust GEE</td>
<td>245</td>
</tr>
<tr>
<td>F.2 Fisher Consistency Corrections</td>
<td>246</td>
</tr>
<tr>
<td>G Computation of the (CRQ)</td>
<td>247</td>
</tr>
<tr>
<td>References</td>
<td>249</td>
</tr>
<tr>
<td>Index</td>
<td>265</td>
</tr>
</tbody>
</table>
Preface

The use of statistical methods in medicine, genetics and more generally in health sciences has increased tremendously in the past two decades. More often than not, a parametric or semi-parametric model is used to describe the data and standard estimation and testing procedures are carried out. However, the validity and good performance of such procedures generally require strict adherence to the model assumptions, a condition that is in stark contrast with experience gained from field work. Indeed, the postulated models are often chosen because they help to understand a phenomenon, not because they fit exactly the data at hand. Robust statistics is an extension of classical statistics that specifically takes into account the fact that the underlying models used by analysts are only approximate. The basic philosophy of robust statistics is to produce statistical procedures that are stable with respect to small changes in the data or to small model departures. These include ‘outliers’, influential observations and other more sophisticated deviations from the model or model misspecifications.

There has been considerable work in robust statistics in the last forty years following the pioneering work of Tukey (1960), Huber (1964) and Hampel (1968) and the theory now covers all models and techniques commonly used in biostatistics. However, the lack of a simple introduction of the basic concepts, the absence of meaningful examples presented at the appropriate level and the difficulty in finding suitable implementation of robust procedures other than robust linear regression have impeded the development and dissemination of such methods. Meanwhile, biostatisticians continue to use ‘ad-hoc’ techniques to deal with outliers and underestimate the impact of model misspecifications. This book is intended to fill the existing gap and present robust techniques in a consistent and understandable manner to all researchers in the health sciences and related fields interested in robust methods. Real examples chosen from the authors’ experience or for their relevance in biomedical research are used throughout the book to motivate robustness issues, explain the central ideas and concepts, and illustrate similarities and differences with the classical approach. This material has previously been tested in several short and regular courses in academia from which valuable feedback has been gained. In addition, the R-code and data used for all examples discussed in the book are available on the supporting website (http://www.wiley.com/go/heritier). The data-based approach presented here makes it possible to acquire both the conceptual framework and practical tools for not only a good introduction but also a practical training in robust methods for a large spectrum of statistical models.