Overcoming Steroid Insensitivity in Respiratory Disease

Edited by

Ian M. Adcock and Kian Fan Chung

National Heart and Lung Institute,
Imperial College London,
London, UK
Overcoming Steroid Insensitivity in Respiratory Disease
Overcoming Steroid Insensitivity in Respiratory Disease

Edited by

Ian M. Adcock and Kian Fan Chung

National Heart and Lung Institute,
Imperial College London,
London, UK

John Wiley & Sons, Ltd
Contents

List of contributors ix
Preface xi

1 Molecular Mechanisms of Glucocorticoid Receptor Action 1
 Pankaj Bhavsar and Ian M. Adcock
 1.1 Introduction 1
 1.2 Glucocorticoid receptor 2
 1.3 Gene induction by GR 2
 1.4 GR transactivation and histone acetylation 3
 1.5 Post-translational modifications of GR 5
 1.6 Repression of NF-κB-induced inflammatory gene expression by GR–NF-κB 6
 1.7 GR–NF-κB cross-talk 7
 1.8 Role of HDAC2 in glucocorticoid function 8
 1.9 Overexpression of HDAC2 restores glucocorticoid sensitivity in alveolar macrophages 9
 1.10 Acetylation of hsp90 and regulation of GR function 10
 1.11 Other mechanisms of GR action 10
 1.12 Conclusions 12

2 Side Effects of Topical and Oral Glucocorticoids 19
 Heike Schäcke, Khusru Asadullah and Wolf-Dietrich Döcke
 2.1 Introduction 19
 2.2 Glucocorticoid-induced side effects 21
 2.3 Summary 33

3 Glucocorticoid Receptor Subtypes and Steroid Sensitivity 39
 Robert H. Oakley and John A. Cidlowski
 3.1 Introduction 39
 3.2 Overview of classic GR function 40
 3.3 GR subtypes arising from alternative splicing 43
 3.4 GR subtypes arising from alternative translation initiation 47
 3.5 Conclusions 49

4 Dissociated Glucocorticoids 55
 Ian M. Adcock
 4.1 Introduction 55
4.2 Asthma and chronic obstructive pulmonary disease are chronic inflammatory diseases of the airways 55
4.3 Regulation of inflammatory gene expression 56
4.4 Effects on inflammation 57
4.5 Mechanisms of glucocorticoid action 58
4.6 Dissociated glucocorticoids 60
4.7 GR cross-talk with other nuclear receptors and coactivators 62
4.8 Overcoming steroid insensitivity 64
4.9 Glucocorticoid-sparing approaches to anti-inflammatory therapy 65
4.10 Conclusion 66

5 Generalized Glucocorticoid Insensitivity: Clinical Phenotype and Molecular Mechanisms 73
Evangelia Charmandari, Tomoshige Kino and George P. Chrousos
5.1 Introduction 73
5.2 Molecular mechanisms of glucocorticoid resistance 75
5.3 Conclusions 85

6 Corticosteroid Responsiveness in Asthma: Clinical Aspects 89
Kian Fan Chung
6.1 Introduction 89
6.2 Effects of corticosteroids in asthma 89
6.3 Definition of corticosteroid insensitivity 90
6.4 Oral CS responsiveness in asthma 91
6.5 ICS responsiveness in asthma 94
6.6 CS responsiveness in severe asthma 97
6.7 Surrogates for CS responsiveness in asthma 99
6.8 Pharmacokinetics of systemic CS in severe asthma 100
6.9 CS responsiveness in cigarette smokers and chronic obstructive pulmonary disease 101
6.10 Other diseases of CS insensitivity 102
6.11 Conclusions 102

7 Glucocorticoid-insensitive Asthma: Molecular Mechanisms 109
John W. Bloom
7.1 Introduction 109
7.2 GR abnormalities 110
7.3 GR nuclear translocation 112
7.4 Cross-talk with transcription factors 115
7.5 NF-κB, GR, histones and chromatin remodelling 116
7.6 Epigenetics and asthma 119
7.7 Conclusions 120

8 Cigarette Smoke, Oxidative Stress and Corticosteroid Responsiveness 125
Irfan Rahman and David Adenuga
8.1 Oxidative stress 125
8.2 Cigarette smoke/oxidative stress-induced NF-κB-mediated pro-inflammatory gene expression 127
CONTENTS

8.3 Histone acetylation and deacetylation 129
8.4 Corticosteroids 129
8.5 Histone deacetylases 133
8.6 Reversing Glucocorticoids / Corticosteroid resistance 138
8.7 Conclusion 141

9 Regulation of Glucocorticoid Sensitivity by Macrophage Migration Inhibitory Factor 145
Eric F. Morand
9.1 Introduction 145
9.2 MIF as a pro-inflammatory factor 145
9.3 Relationship between MIF and glucocorticoids 151
9.4 Conclusions 155

10 Steroid-sparing Strategies: Long-acting Inhaled β₂-Agonists 163
Anna Miller-Larsson and Olof Selroos
10.1 Introduction 163
10.2 Why and when is a steroid-sparing effect of LABA important in asthma? 163
10.3 Effects of lower dose ICS/LABA versus a higher dose ICS on lung function, symptoms and use of reliever medication 164
10.4 Effects of lower dose ICS/LABA versus higher dose ICS on exacerbations 165
10.5 Protocols with tapering ICS doses with and without LABA while maintaining asthma control 166
10.6 Reducing ICS doses using an adjustable ICS/LABA dosing regimen 167
10.7 Reducing ICS doses using Symbicort® maintenance and reliever therapy 168
10.8 Does enhanced anti-inflammatory efficacy explain steroid-sparing effects in ICS/LABA therapy? 170
10.9 Possible Mechanisms of Steroid-sparing Effects by Addition of LABA to ICS 175

11 Steroid-sparing Strategies: Other Combinations 187
Gaetano Caramori, Kazuhiro Ito and Alberto Papi
11.1 Introduction 187
11.2 Theophylline as steroid-sparing treatment in asthma and COPD 187
11.3 Selective inhibitors of PDE4 190
11.4 Modulators of the synthesis or action of key inflammatory mediators 193
11.5 Anticholinergics 193
11.6 Leukotriene synthesis inhibitors and leukotriene receptor antagonists 195
11.7 Anti-IgE therapy 198
11.8 Macrolides/ketolides 199
11.9 TNFα inhibitors 200
11.10 Conclusions 202

12 Kinases as Anti-inflammatory Targets for Respiratory Disease 207
Iain Kilty
12.1 Introduction 207
12.2 Pharmacological targeting of kinases 208
12.3 Targeting NF-κB activation 210
CONTENTS

12.4 Targeting the MAPKs 217
12.5 Targeting PI3K 225
12.6 Further potential kinase targets 229
12.7 Conclusions 232

13 Pharmacokinetic/Pharmacodynamic Factors and Steroid Sensitivity 243
 Gönther Hochhaus
 13.1 Introduction 243
 13.2 What factors are important for pulmonary efficacy and safety? 243
 13.3 Pharmacodynamic aspects 246
 13.4 Pharmacokinetic drug properties 247
 13.5 Conclusion 257

14 Improved Lung Deposition: New Inhaler Devices 263
 Omar S. Usmani
 14.1 Introduction 263
 14.2 Historical review of inhaled drug therapy 263
 14.3 Deposition of aerosols within the respiratory tract 265
 14.4 Assessing drug deposition in the lungs 268
 14.5 Aerosol generation devices for inhaled drug therapy 271

Index 283
List of Contributors

Ian M. Adcock Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK

David Adenuga Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, Rochester, NY, USA

Khusru Asadullah Target Discovery, Bayer Schering Pharma AG, Muellerstrasse 178, Berlin, Germany

Pankaj Bhavsar Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK

John W. Bloom Departments of Pharmacology and Medicine, Arizona Respiratory Center, University of Arizona College of Medicine, Tucson, AZ, USA

Gaetano Caramori Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy

Evangelia Charmandari Clarendon Wing, Leeds General Infirmary, Leeds, UK

George P. Chrousos First Department of Pediatrics, Athens University Medical School, Aghia Sophia Children’s Hospital, Athens, Greece

Kian Fan Chung National Heart and Lung Institute, Imperial College London, London, UK

John A. Cidlowski Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, MD F307, Research Triangle Park, NC, USA

Wolf-Dietrich Döcke Target Discovery, Bayer Schering Pharma AG, Berlin, Germany

Günther Hochhaus College of Pharmacy, University of Florida, Gainsville, FL, USA

Kazuhiro Ito Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
Iain Kilty Allergy and Respiratory Therapeutic Area, Pfizer Global Research and Development, Sandwich, UK

Tomoshige Kino Section on Pediatric Endocrinology, Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA

Anna Miller-Larsson Department of Medical Science, AstraZeneca R&D Lund, Sweden

Eric F. Morand Centre for Inflammatory Diseases, Monash University, Monash Medical Centre, Melbourne, Victoria, Australia

Robert H. Oakley Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, MD F307, Research Triangle Park, NC, USA

Alberto Papi Centro di Ricerca su Asma e BPCO, Università di Ferrara, Ferrara, Italy

Irfan Rahman Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA

Heike Schäcke Common Mechanism Research, Bayer Schering Pharma AG, Berlin, Germany

Olof Selroos SEMECO AB, Selroos Medical Consulting, Lund, Sweden

Omar S. Usmani National Heart and Lung Institute, Imperial College London, London, UK
Preface

The treatment of chronic inflammatory diseases was revolutionized by the discovery of the therapeutic utility of corticosteroids in the 1950s. Since this time they have been the mainstay of treatment for chronic inflammatory diseases. Their utility has been tempered, however, by the increasing risk of debilitating side effects with higher dose therapy. This is important because a reasonable proportion of patients with severe asthma do not respond well to high doses of inhaled or even oral corticosteroids. Thus 5% of asthmatics who do not respond to corticosteroid therapy account for >50% of the total healthcare costs for asthma. In addition, patients with chronic obstructive pulmonary disease also show little or no responsiveness to conventional corticosteroid therapy.

In the treatment of airways diseases side effects can be limited by targeted delivery to the airway and lung. Significant progress has been made through the use of increasingly selective molecules, and through a variety of lung-targeting strategies. Moreover, the recent developments in our understanding of the molecular and structural mechanisms of corticosteroid actions have suggested that it may be possible to develop a new corticosteroid, with intrinsically different pharmacology, that does not induce many of the pathways involved in the manifestation of side effects. A combination of these developments will enable the design of agents with an enhanced therapeutic index.

Ian M. Adcock
Kian Fan Chung
Imperial College London
Molecular Mechanisms of Glucocorticoid Receptor Action

Pankaj Bhavsar and Ian M. Adcock

1.1 Introduction

Glucocorticoids are the most effective therapy for the treatment of many chronic inflammatory diseases such as asthma and inflammatory bowel disease (Ito et al., 2006a). In contrast to the situation in asthma, chronic obstructive pulmonary disease (COPD), a common and debilitating chronic inflammatory disease of the lung, is glucocorticoid insensitive (Barnes, 2000a, b; Culpitt et al., 2003).

Glucocorticoids act by binding to cytosolic glucocorticoid receptors (GRs), which upon binding become activated and rapidly translocate to the nucleus. Within the nucleus, GR either induces transcription of genes such as secretary leukocyte protease inhibitor (SLPI) (Abbinante-Nissen et al., 1995) and mitogen-activated kinase phosphatase-1 (Lasa et al., 2002) by binding to specific DNA elements (glucocorticoid response element, GRE) at the promoter/enhancer of responsive genes, or reduces inflammatory gene transcription induced by nuclear factor-kappa B (NF-κB) or other pro-inflammatory transcription factors (Ito et al., 2006a). Binding of GR to p65-NF-κB is crucial for transrepression by glucocorticoids, however, it is not clear how the GR dissociates its ability to control inflammation by suppressing NF-κB from its ability to directly transactivate genes via binding to GRE (Ito et al., 2006b).

In the resting cell, chromatin is tightly compacted to prevent transcription factor accessibility. During activation of the cell this compact inaccessible chromatin is made available to DNA-binding proteins, thus allowing the induction of gene transcription (Lee and Workman, 2007; Li et al., 2007). There is compelling evidence that increased inflammatory gene transcription is associated with an increase in histone acetylation induced by transcriptional coactivators containing...