Equity Valuation

Models from Leading Investment Banks

Edited by

Jan Viebig
Thorsten Poddig
and
Armin Varmaz

John Wiley & Sons, Ltd
For other titles in the Wiley Finance series
please see www.wiley.com/finance
Equity Valuation

Models from Leading Investment Banks

Edited by

Jan Viebig
Thorsten Poddig
and
Armin Varmaz

John Wiley & Sons, Ltd
Contents

Foreword xiii

Preface xvii

Acknowledgments xxiii

Abbreviations xxv

Part I Discounted Cash Flow (DCF) Models 1
Jan Viebig and Thorsten Poddig

1 Introduction 3

2 The Fundamental Value of Stocks and Bonds 5

3 Discounted Cash Flow Models: The Main Input Factors 11
 3.1 Analytical balance sheets and free cash flow discount models 11
 3.2 The dividend discount model 14
 3.3 The free cash flow to the firm (FCFF) model 21
 3.3.1 Stirling Homex: why cash is king! 21
 3.3.2 FCFF during the competitive advantage period 27
 3.3.3 Weighted average cost of capital (WACC) 35
 3.3.4 Terminal value calculation 45

References 49

Part II Monte Carlo Free Cash Flow to the Firm (MC-FCFF) Models 53
(Deutsche Bank/DWS)
Jan Viebig and Thorsten Poddig

4 Introduction 55

5 Standard FCFF Model 57
 5.1 Net revenues 59
 5.2 Cost structure and operating income 63

Tom Larsen and David Holland

7 Introduction

8 From Accounting to Economics – Part I

9 From Economics to Valuation – Part I

10 Where Does Accounting Go Wrong?

11 From Accounting to Economics: CFROI

11.1 The basics

11.1.1 Return on net assets (RONA) or return on invested capital (ROIC)

11.1.2 Return on gross investment (ROGI)

11.1.3 Cash flow return on investment (CFROI)

11.2 CFROI adjustments using Vodafone’s March 2005 annual report

11.2.1 Gross investment

11.2.2 Non-depreciating assets

11.2.3 Project life

11.2.4 Gross cash flow

11.3 CFROI calculation for Vodafone

11.4 A comment on goodwill

12 From Accounting to Economics: Economic Profit

12.1 The basics

12.2 Caveats

12.3 EP adjustments using Vodafone March 2005 annual report

12.3.1 Balance Sheet

12.3.2 Net operating profit after tax (NOPAT)

12.3.3 Economic profit

12.3.4 EP or CFROI?
13 From Economics to Valuation – Part II 157
 13.1 General rules 157
 13.2 Market value added 157
 13.3 CFROI 157
 13.4 A word on debt 158
 13.5 Valuation
 13.5.1 CFROI valuation: general framework 159
 13.5.2 Understanding project returns 159
 13.5.3 The residual period 161
 13.5.4 CFROI residual period approach 164
 13.5.5 Economic profit valuation: general framework 165
 13.6 Valuation of Vodafone 167
 13.7 EP or CFROI? 171
 13.8 A final word 173

Appendix 1: Vodafone Financial Statements and Relevant Notes for CFROI Calculation 175

Appendix 2: Additional Notes from Vodafone Annual Report for EP Calculation 185

References 191

Part IV Morgan Stanley ModelWare’s Approach to Intrinsic Value: Focusing on Risk-Reward Trade-offs 193
Trevor S. Harris, Juliet Estridge and Doron Nissim

14 Introduction 195

15 Linking Fundamental Analysis to the Inputs of the Valuation Model 199

16 Our Valuation Framework 203

17 Linking Business Activity to Intrinsic Value: The ModelWare Profitability Tree 211

18 ModelWare’s Intrinsic Value Approach 219

19 Treatment of Key Inputs 231

20 The Cost of Capital 233
 20.1 Risk-free rate 233
 20.2 Equity risk premium 234
 20.3 Beta-estimation 234

21 Summary and Conclusions 237

Appendix 239
 References 251
Part V UBS VCAM and EGQ Regression-based Valuation

David Bianco

22 Introducing “EGQ” – Where Intrinsic Methods and Empirical Techniques Meet

23 A Quick Guide to DCF and Economic Profit Analysis
 23.1 Powerful analytical frameworks, but not a complete solution
 23.2 Dynamics of economic profit analysis
 23.3 “Unadulterated EVA”
 23.4 Value dynamic 1: ROIC
 23.5 Value dynamic 2: invested capital
 23.6 Value dynamic 3: WACC
 23.7 Value dynamic 4: the value creation horizon
 23.8 Combining all four value dynamics: EGQ
 23.8.1 EGQ vs. PVGO
 23.8.2 The search for the ultimate valuation methodology

24 Regression-based Valuation

25 UBS Economic Growth Quotient
 25.1 The EGQ calculation
 25.2 EGQ special attributes
 25.2.1 A complete metric
 25.2.2 Not influenced by the current capital base
 25.2.3 Limited sensitivity to the assumed cost of capital
 25.2.4 Comparable across companies of different size
 25.2.5 Explains observed multiples on flows like earnings or cash flow

26 UBS EGQ Regression Valuation
 26.1 Intrinsic meets relative valuation
 26.2 EGQ regressions: relative valuation theater
 26.3 EGQ regressions: a layered alpha framework
 26.4 Y-intercept indicates cost of capital
 26.5 Slope vs. Y-intercept indicates style
 26.6 Emergent valuation
 26.7 Why regress EGQ vs. EV/NOPAT?
 26.8 Think opposite when under the X-axis

27 Understanding Regressions
 27.1 Key takeaways
 27.2 The line – what is the relationship?
 27.2.1 Slope (beta)
 27.2.2 y-intercept (alpha)
 27.3 The explanatory power or strength of the relationship
 27.3.1 Correlation coefficient (R)
 27.3.2 Coefficient of determination (R^2)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.4 Reliability or confidence in the quantified relationship</td>
<td>278</td>
</tr>
<tr>
<td>27.4.1 Standard error (of beta)</td>
<td>278</td>
</tr>
<tr>
<td>27.4.2 t-Statistic</td>
<td>278</td>
</tr>
<tr>
<td>27.5 Regression outliers</td>
<td>278</td>
</tr>
<tr>
<td>27.5.1 Influence outliers</td>
<td>278</td>
</tr>
<tr>
<td>27.5.2 Leverage outliers</td>
<td>278</td>
</tr>
<tr>
<td>27.6 Beware of outliers in EGQ regressions</td>
<td>279</td>
</tr>
<tr>
<td>28 Appendix Discussions</td>
<td>281</td>
</tr>
<tr>
<td>28.1 EGQ's muted sensitivity to assumed WACC</td>
<td>281</td>
</tr>
<tr>
<td>28.2 EV/IC vs. ROIC/WACC regressions</td>
<td>282</td>
</tr>
<tr>
<td>28.3 PE vs. EPS growth regressions or PEG ratios</td>
<td>284</td>
</tr>
<tr>
<td>28.4 Return metrics: ROIC vs. CFROI</td>
<td>285</td>
</tr>
<tr>
<td>28.5 Accrual vs. cash flow return measures</td>
<td>286</td>
</tr>
<tr>
<td>28.6 ROIC vs. CFROI</td>
<td>286</td>
</tr>
<tr>
<td>28.7 Adjusting invested capital important, but not for EGQ</td>
<td>288</td>
</tr>
<tr>
<td>References</td>
<td>291</td>
</tr>
<tr>
<td>Part VI Leverage Buyout (LBO) Models</td>
<td>293</td>
</tr>
<tr>
<td>Jan Viebig, Daniel Stillit and Thorsten Poddig</td>
<td></td>
</tr>
<tr>
<td>29 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>30 Leveraged Buyouts</td>
<td>297</td>
</tr>
<tr>
<td>31 IRRs and the Structure of LBO Models</td>
<td>301</td>
</tr>
<tr>
<td>32 Assumptions of LBO Models</td>
<td>307</td>
</tr>
<tr>
<td>33 Example: Continental AG</td>
<td>317</td>
</tr>
<tr>
<td>33.1 Background</td>
<td>317</td>
</tr>
<tr>
<td>33.2 LBO modeling approach – appropriate level of detail</td>
<td>318</td>
</tr>
<tr>
<td>33.3 Key LBO parameters</td>
<td>318</td>
</tr>
<tr>
<td>33.4 Step-by-step walk through the model</td>
<td>320</td>
</tr>
<tr>
<td>34 A Word of Caution</td>
<td>329</td>
</tr>
<tr>
<td>References</td>
<td>333</td>
</tr>
<tr>
<td>Part VII Valuation 101: Approaches and Alternatives</td>
<td>335</td>
</tr>
<tr>
<td>Aswath Damodaran</td>
<td></td>
</tr>
<tr>
<td>35 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>36 Overview of Valuation</td>
<td>339</td>
</tr>
<tr>
<td>37 Discounted Cash Flow Valuation</td>
<td>341</td>
</tr>
<tr>
<td>37.1 Essence of discounted cashflow valuation</td>
<td>341</td>
</tr>
<tr>
<td>Contents</td>
<td>xi</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
</tr>
<tr>
<td>43.4</td>
<td>Certainty equivalents and utility-based valuation</td>
</tr>
<tr>
<td>43.5</td>
<td>Risk neutral probabilities</td>
</tr>
<tr>
<td>44</td>
<td>Outlook: The Multi-asset Valuation and Allocation Case</td>
</tr>
<tr>
<td>45</td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>References</td>
</tr>
<tr>
<td></td>
<td>Index</td>
</tr>
</tbody>
</table>
Every student of finance or applied economics learns the lessons of Franco Modigliani and Merton Miller. Their landmark paper, published in 1958, laid out the basic underpinnings of modern finance and these two distinguished academics were both subsequently awarded the Nobel Prize in Economics. Simply stated, companies create value when they generate returns that exceed their costs. More specifically, the returns of successful companies will exceed the risk-adjusted cost of the capital used to run the business. Further, these returns and the securities of the underlying companies must be judged against an uncertain backdrop, such that the risk-adjusted expected returns are attractive.

Investors seek to identify these successful companies. They strive to calculate the appropriate pricing of securities. How can this best be done? Every practitioner knows that the two simple declarative sentences at the beginning of this paragraph belie the complexity of the search for successful companies and financial instruments that offer favorable prospects for investors. The world is messier than models. Accounting data can be unreliable, economic conditions can change, investor risk tolerance can shift, and low-probability scenarios can occur.

This book is written from the perspective of practitioners, and the editors have chosen leaders in the field who can describe the theory and implementation behind their various approaches. The contributors to *Equity Valuation: Models from Leading Investment Banks* also describe the potential weakness of different models. This perspective is essential to understanding why there is no single magical solution. Investors are urged to use models as tools, often very powerful tools, but not as replacements for sound analysis and common sense.

Most successful investors believe that the fundamentals of economic and company performance will ultimately determine the performance of financial assets. Indeed, models are typically constructed in the hope of identifying deviations from fundamentally determined prices for entire classes of financial assets as well as specific securities. In Part I, Jan Viebig and Thorsten Poddig, the lead authors of this book, describe the basics of many valuation models, which are linked to key metrics such as cash flow, earnings and book value.

To paraphrase the authors, valuing a company would be simple if balance sheets and income statements were always accurate. In the real world, balance sheets may not fully reflect the fair value of assets, debt and equity, and earnings per share may not capture the sustainable earnings power of the company. Even when there is no intention to deceive, there is an underlying tension between corporate accounting, which seeks to take a snapshot at a specific point in time and to do so in a timely way, and the economic reality.

Even well-constructed models can lead to errors if the inputs to the model are wrong. This happens most often when there are notable changes, for example, in the macroeconomic