This page intentionally left blank
The Pulmonary Epithelium in Health and Disease
The Pulmonary Epithelium in Health and Disease

Edited by

David Proud
Department of Physiology and Biophysics,
University of Calgary, Alberta, Canada
Contents

Preface xi
List of Contributors xv

1. Pulmonary Epithelium: Cell Types and Functions 1
 Mary Mann-Jong Chang, Laura Shih and Reen Wu
 1.1 Introduction 1
 1.2 Epithelial cell types and functions in the cartilaginous proximal airway region 2
 1.3 Epithelial cell types and functions of the non-cartilaginous distal bronchioles 9
 1.4 Epithelial cell types and functions of the gas exchange region 11
 1.5 Circulating stem cells and applications in lung regenerative medicine 13
 1.6 Stem cell therapy: embryonic or adult? 13
 1.7 Conclusion 14

2. Epithelial Adhesive Structures and Adhesion Molecule Expression 27
 George Su and Dean Sheppard
 2.1 Introduction 27
 2.2 Cell–cell adhesive structures 27
 2.3 Cell–substratum adhesion 38
 2.4 Conclusion 45

3. The Epithelium as a Target 57
 Louise E. Donnelly
 3.1 Introduction 57
 3.2 Asthma 57
 3.3 Alteration in epithelial cell type distribution 60
 3.4 Overview of epithelial damage in asthma 61
 3.5 Chronic obstructive pulmonary disease 62
 3.6 Effect of cigarette smoke 62
 3.7 Other causative factors 63
 3.8 Alveolar epithelial cell apoptosis – emphysema 64
 3.9 Overview of epithelial damage in COPD 65
 3.10 Damage to the epithelium in other diseases 66
 3.11 Conclusions 67
4. Epithelial Repair and Function 75
Carl G. A. Persson, Morgan Andersson and Lena Uller

4.1 Brief introduction to epithelial shedding-repair and associated functions in health and disease 75
4.2 Repair following shedding of single columnar epithelial cells and following shedding of clusters of columnar cells 77
4.3 Epithelial denudation 80
4.4 Pharmacology of epithelial repair 83
4.5 Epithelial shedding-restitution as a causative process in airway inflammation and remodelling 84

5. Integration of Epithelial Ion Transport Activities into Airway Surface Liquid Volume and Ion Composition Regulation 89
Mark T. Clunes, Peter F. Bove and Richard C. Boucher

5.1 Introduction: the role of fluid in airway/alveolar physiology 89
5.2 Model of ion and solute transport through airway epithelia 92
5.3 Airway histology 93
5.4 Airway ion secretion 93
5.5 The cystic fibrosis transmembrane conductance regulator 93
5.6 Calcium-activated chloride channels 94
5.7 K⁺ channels 95
5.8 Airway ion absorption 96
5.9 Measurement of ion and water transport in airway epithelia 97
5.10 In vivo transepithelial PDs 99
5.11 Volume flow measurements 100
5.12 Physiologically 'thin film' measurements of ASL volume regulation with confocal microscopy and microelectrodes: studies of normal and CF airway epithelia 101
5.13 The role of physiologic airway shear-stress in ion transport and ASL regulation 104
5.14 Fluid transport across the alveolar epithelium 106

6. Structure and Function of Cilia 111
Andreas Schmid and Matthias Salathe

6.1 Introduction 111
6.2 Structure 111
6.3 Function 114
6.4 Ciliary dysfunction associated with disease 118

7. Composition and Function of Airway Mucus 127
Duncan F. Rogers

7.1 Airway 'mucus' 127
7.2 Respiratory tract mucins 130
7.3 Mucin genes and gene products 133
7.4 MUC5AC 134
7.5 MUC5B 134
7.6 Airway mucus hypersecretory phenotype in COPD 134
7.7 Airway mucus hypersecretory phenotype in asthma 135
7.8 Mucociliary clearance in asthma and COPD 136
7.9 Mechanisms of airway goblet cell hyperplasia 137
7.10 Differences in mucus hypersecretory phenotype between asthma, COPD and CF 137
7.11 Conclusions 140
CONTENTS

12.6 Rhinoviruses 231
12.7 Respiratory syncytial virus 236
12.8 Influenza 239
12.9 Interactions between viral infections and other stimuli 241

13. Bacterial Interactions with the Airway Epithelium 253
Marisa I. Gómez and Alice Prince

13.1 Introduction 253
13.2 Bacterial pneumonia 253
13.3 Bacterial virulence factors: role in lung colonization 254
13.4 Bacterial recognition by airway epithelial cells 256
13.5 Airway epithelial cell responses to bacteria 261
13.6 Signaling pathways involved in chemokine and cytokine production by epithelial cells 263
13.7 Regulation of inflammation by epithelial cells – receptor shedding 264
13.8 Lung damage and bacterial invasion of the airway epithelium 264
13.9 Conclusions 265

14. Interactions of Pollutants with the Epithelium 275
Ernst Wm. Spannhake

14.1 Introduction 275
14.2 Oxidant pollutants 276
14.3 Particulate matter 282
14.4 Secondhand cigarette smoke 287
14.5 Conclusions 290

15. Interactions between Allergens and the Airway Epithelium 301
Clive Robinson and Jihui Zhang, Geoffrey A. Stewart

15.1 The airway epithelium as a key target of allergens 301
15.2 The epithelial barrier 302
15.3 Peptidases and epithelial cell signalling 304
15.4 The biochemical properties of allergens and their contribution to allergenicity 305
15.5 Peptidase contributions to allergic sensitization via the epithelium 310
15.6 Conclusions 320

16. The Epithelium as a Regulator of Airway Inflammation 329
Richard Leigh and David Proud

16.1 Introduction 329
16.2 Epithelial production of cytokines, growth factors and chemokines 329
16.3 Epithelial production of lipid mediators 335
16.4 Epithelial production of peptide mediators 337
16.5 Epithelial production of reactive nitrogen and oxygen species 337
16.6 Epithelial production of proteases 340
16.7 The role of epithelial cells in the recruitment of inflammatory cells 341
16.8 Anti-inflammatory actions of epithelial cells 342
16.9 Summary 344
Preface

The past two decades have seen extraordinary advances in our understanding of the role of the pulmonary epithelium in airway health and disease. The traditional view of the epithelium as predominantly a physical barrier that also plays a role in ion and water transport has been supplanted by one in which the epithelium is now also considered to be a central regulator of airway inflammation, structure and function. In light of the dramatic changes in our awareness of the complexity of epithelial cell functions, it seemed particularly timely to produce a book to comprehensively address our current understanding of epithelial cell biology. In particular, I wished to focus not only on the epithelium as a regulator of normal airway function, but also to highlight the important roles of the epithelium in host defense, and the contributions of aberrant epithelial biology to the pathogenesis of inflammatory airway diseases.

The first two chapters of this volume are designed to provide an update on the basic structure of the epithelium, including information on the cell types that comprise the epithelium at different levels of the airway, and on the capacity of specific cell types to serve as progenitor cells for new growth. In addition, the remarkable recent increases in our understanding of the molecular components of the structures that are critical for the cell-cell, and cell-matrix, adhesion necessary to maintain epithelial structure are discussed, along with the complex roles of epithelial adhesion molecules in regulating not only epithelial function but also the interactions of the epithelium with other cell types and pathogens. The subsequent two chapters focus on the role of the epithelium as a target for damage by a variety of agents, and on the process of epithelial repair. Fragility of the epithelium is a hallmark of asthma, and there is growing recognition that a chronic damage/repair cycle may play a role in the pathogenesis of this disease. Although ion transport has long been recognized as a major function of the epithelium, our understanding of the complexity and regulation of epithelial ion transport, and of the consequences of dysregulation of these events, has improved considerably in recent years, and our current knowledge is detailed in Chapter 5.

Perhaps no facet of our awareness of epithelial cell function has grown as rapidly as our understanding of the role of the epithelium in host defense, the focus of the next block of chapters. As may be expected from its location at the airway surface, the epithelium plays a critical role in protection of the host from inspired pathogens and irritants. In the larger airways, the tightly regulated process of mucociliary clearance provides the initial defense to prevent pathogens from contacting the epithelial surface, and defects in ciliary beat, or abnormal mucus composition, underlie several airway diseases that are characterized by increased susceptibility to repeated infection. In the distal airways, where mucociliary clearance is absent, surfactant plays a critical role in reducing surface tension at the airway surface. Of equal importance, however, is the role of surfactant in host defense. Not only
does it coat particulates and microbes, facilitating clearance via cough, but it is now clear that several of the protein components of surfactant have broad ranging direct antimicrobial actions. If microbes can evade these initial defenses and come into contact with the epithelium, they are detected by a range of recognition molecules. These include specific receptors as well as broad-ranging “pattern recognition molecules”. Depending upon the specific nature of the ligand to be recognized, these molecules can be intracellular or expressed on the cell surface. Once microbial pattern recognition or specific receptor engagement occurs, epithelial cells respond by generating a wide range of defense molecules. These include direct antimicrobials, as well as molecules that serve to recruit and activate inflammatory cells that contribute to host defense. Finally, in this section, a major area of new investigation is the ability of the epithelium to play a major role in immunoregulation, in particular to provide an important link between innate and specific immunity.

The past decade or so also has seen marked improvements in our understanding both of the interactions of specific inhaled stimuli with the epithelium, and of the consequences of such interactions on airway function. The next set of chapters, therefore, deal with the interaction of four major classes of inhaled stimuli that affect epithelial function. Respiratory viruses not only cause upper airway diseases but also play a major role in triggering exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Such effects are initiated via interactions with the epithelium. Similarly, epithelial responses to bacteria play a major pathogenic role in diseases from pneumonia, to cystic fibrosis to COPD. In our modern environment, pollutants are major exacerbarators of a range of airway diseases. Finally, while the interactions of allergens with cells such as mast cells, basophils and lymphocytes obviously play a major role in allergic diseases, a growing body of literature demonstrates that interactions of allergens, particularly those with endogenous proteolytic activity, with the epithelium not only contribute to direct inflammatory effects but also play a critical role in permitting access of allergens to target cells in the underlying airway tissue.

There is now no doubt that the epithelial cell plays a major role in regulating the inflammatory and structural status of the airway. The epithelium has wide ranging synthetic and metabolic capacities. It can maintain normal airway status via its ability to inhibit or degrade a range of proinflammatory molecules but, upon repeated exposure to stimuli, can also generate a wide range of mediators that can contribute to, and exacerbate, chronic airway inflammation. Recurrent epithelial damage and repair can also cause repeated interactions between the epithelium and other structural cells, such as fibroblasts/myofibroblasts, leading to chronic reactivation of the so-called “epithelial mesenchymal trophic unit”. This can lead to marked structural changes in the airway, such as the hallmark changes in asthma collectively referred to as airway remodeling.

The final set of chapters deals with the interactions of inhaled medications with the epithelium. Given the wide ranging properties discussed above, and the alterations of epithelial function in airway diseases, several of the beneficial actions of inhaled medications, including glucocorticoids, β2-adrenergic agonists and muscarinic receptor antagonists, in diseases such as asthma and COPD may well be mediated via alterations of epithelial cell function. Last, but not least, there is growing interest in inhaled delivery of drugs, not only as a means to exert local effects in the lung, but also as a means of systemic delivery for drugs, particularly those that cannot survive oral delivery. Preserving the molecular integrity of a formulation and delivering it to the appropriate target in the lung are critical for effective therapy, and some of the recent advances in this regard are discussed in the final chapter.
Each of the chapters in this text were written by leaders in their field. Production of a text of this comprehensive nature would not have been possible without their commitment. I would like to take this opportunity to extend my sincere thanks to all of the contributors for devoting their valuable time and expertise to this volume.

David Proud