Biobased Lubricants and Greases
Technology and Products

Lou Honary
Erwin Richter
BIOBASED LUBRICANTS AND GREASES
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Edition/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin & Ohmae</td>
<td>Nanolubricants</td>
<td>April 2008</td>
</tr>
<tr>
<td>Lansdown</td>
<td>Lubrication and Lubricant Selection, 3rd Edition</td>
<td>November 2003</td>
</tr>
<tr>
<td>Neale, Polak & Priest (eds)</td>
<td>Handbook of Surface Treatment and Coatings</td>
<td>May 2003</td>
</tr>
<tr>
<td>Sherrington, Rowe & Wood (eds)</td>
<td>Total Tribology – towards an integrated approach</td>
<td>December 2002</td>
</tr>
<tr>
<td>Kragelsky, Alisin, Myshkin & Petrokovets (eds)</td>
<td>Tribology – Lubrication</td>
<td>April 2001</td>
</tr>
<tr>
<td>Stolarski & Tobe</td>
<td>Rolling Contacts</td>
<td>December 2000</td>
</tr>
</tbody>
</table>
BIOBASED LUBRICANTS AND GREASES
TECHNOLOGY AND PRODUCTS

Lou A.T. Honary
Professor and Founding Director
National Ag-Based Lubricants Center
University of Northern Iowa, USA

Erwin Richter
National Ag-Based Lubricants Center
University of Northern Iowa, USA
Contents

About the Authors xi
Preface xiii
Series Preface xv
Acknowledgements xvii
Summary xix
Introduction xxi

1 Historical Development of Vegetable Oil-based Lubricants 1
 1.1 Introduction 1
 1.2 Pioneering Industrial Uses of Vegetable Oils 3
 1.3 Petroleum 5
 References 8

2 Chemistry of Lubricants 9
 2.1 The Nature of the Carbon Atom 9
 2.2 Carbon and Hydrocarbons 9
 2.2.1 Pointers for Non-Chemists on Vegetable oil and General Chemistry 16
 References 19

3 Petroleum-based Lubricants 21
 3.1 Introduction 21
 3.2 Basic Chemistry of Crude Oils 22
 3.2.1 The Paraffinic Oils 22
 3.2.2 The Naphthenic Oils 22
 3.2.3 The Aromatic Oils 22
 References 24

4 Plant Oils 25
 4.1 Chemistry of Vegetable Oils Relating to Lubricants 25
 4.2 Triglycerides 26
4.3 Properties of Vegetable Oils

4.4 Vegetable Oil Processing

- **4.4.1 Degumming**
- **4.4.2 Bleaching**
- **4.4.3 Refining**
- **4.4.4 Deodorizing**
- **4.4.5 Interesterification**

4.5 Oxidation

- **4.5.1 Reducing Oxidation**
- **4.5.2 Hydrogenation**

4.6 Winterization

4.7 Chemical Refining

4.8 Conventional Crop Oils

- **4.8.1 Soybean**
- **4.8.2 Palm Oil**
- **4.8.3 Rapeseed**
- **4.8.4 Sunflower Oil**
- **4.8.5 Corn**
- **4.8.6 Safflower**

4.8 References

5 Synthetic Based Lubricants: Petroleum-Derived and Vegetable Oil-Derived

5.1 Esters

5.2 Esters for Biofuels

5.3 Complex Esters

5.4 Estolides

5.5 Other Chemical Modifications

- **5.5.1 Metathesis**
- **5.5.2 Enzymatic Hydrolysis of Fatty Acids**

5.5 References

6 Genetic Modification and Industrial Crops

6.1 Introduction

6.2 Industrial Crops

- **6.2.1 Camelina**
- **6.2.2 Babassu**
- **6.2.3 Cuphea**
- **6.2.4 Castor**
- **6.2.5 Rice Bran**
- **6.2.6 Jatropha**
- **6.2.7 Neem**
- **6.2.8 Karanja (Pongam)**
- **6.2.9 Poppy**
- **6.2.10 Sesame**
- **6.2.11 Jojoba**

6.2 References
6.2.12 Coconut 81
6.2.13 Lesquerella 83
6.2.14 Hemp 83
6.2.15 Flaxseed oil 84
6.2.16 Safflower 85
6.3 Future and Industrial Crops 86
References 88

7 Biobased Lubricants Technology 91
7.1 Determination of Oxidation Stability 91
 7.1.1 Active Oxygen Method (AOCS Method Cd 12-57) 92
 7.1.2 Peroxide Value (AOCS Method 8b-90) 92
 7.1.3 Oil Stability Instrument (AOCS Method Cd 1 2b-92) 93
 7.1.4 Rancimat 93
 7.1.5 Viscosity Change as a Measure of Oxidation 95
7.2 Applications 97
7.3 Petroleum White Oils and Food Grade Lubricants 99
References 101

8 Performance Properties of Industrial Lubricants 103
8.1 Introduction 103
8.2 Common Performance Requirements 104
 8.2.1 Viscosity 104
 8.2.2 Flash and Fire Points 107
 8.2.3 Boiling Range 107
 8.2.4 Volatility 108
 8.2.5 Cold Temperature Properties 108
 8.2.6 Density 109
 8.2.7 Foaming Properties 109
 8.2.8 Copper Strip Corrosion 111
 8.2.9 Copper Strip Corrosion Test 111
 8.2.10 Rust Prevention 111
 8.2.11 Test Purpose 112
 8.2.12 Neutralization Number 113
 8.2.13 Solubility 113
 8.2.14 Aniline Point 113
8.3 Heat Transfer Properties 113
8.4 Dielectric Properties 116
8.5 Fluid Quality 117
8.6 Fluid Compatibility 118
8.7 Hydrostatic Stability 120
8.8 Demulsibility 121
8.9 Oxidation Stability 122
8.10 Oxidation Stability for Mineral Oils 122
 8.10.1 Aromatic Content of Mineral Oils 123
8.11 Elemental Analysis 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.12</td>
<td>Cleanliness</td>
<td>124</td>
</tr>
<tr>
<td>8.13</td>
<td>Storage and Shipping Temperatures</td>
<td>126</td>
</tr>
<tr>
<td>8.14</td>
<td>Tribological Performance of Biobased Lubricants</td>
<td>127</td>
</tr>
<tr>
<td>8.14.1</td>
<td>Four Ball Wear Test: ASTM D 4172</td>
<td>128</td>
</tr>
<tr>
<td>8.14.2</td>
<td>Four Ball Extreme Pressure Test</td>
<td>128</td>
</tr>
<tr>
<td>8.14.3</td>
<td>Timken O.K. Load Test – ASTM D 2509</td>
<td>128</td>
</tr>
<tr>
<td>8.14.4</td>
<td>FZG Rating</td>
<td>128</td>
</tr>
<tr>
<td>8.15</td>
<td>Metalworking Fluids</td>
<td>130</td>
</tr>
<tr>
<td>8.16</td>
<td>Biobased Engine Oils</td>
<td>135</td>
</tr>
<tr>
<td>8.16.1</td>
<td>Stationary Diesel Engines for CORS</td>
<td>137</td>
</tr>
<tr>
<td>8.16.2</td>
<td>Test Results</td>
<td>138</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>141</td>
</tr>
</tbody>
</table>

9 Biobased and Petroleum-Based Greases | 143 |
9.1	How to Make Soap	143
9.2	Basic Process for Manufacturing Grease	148
9.2.1	Simple (Soap-Based) Greases	149
9.2.2	Complex (Soap–Salt) based Greases	152
9.2.3	Non-Soap-Based Greases	152
9.2.4	Preformed Soaps	154
9.2.5	Preformed Dehydrated Soap for Biobased Greases	154
9.2.6	Microparticle Dispersion of Lithium Hydroxide	154
9.2.7	Polymer-thickened Greases Using Bio-based Base Oil	155
9.3	Continuous Grease Manufacturing Process	156
9.4	Use of High Pressure-High, Shear Reaction Chambers (Contactor)	157
9.5	Vegetable Oil-based Greases	159
9.5.1	Alternative Heating Methods	160
9.5.2	Heating Method and Impact on Oxidation Stability	162
9.6	Grease Consistency	164
9.7	Grease Specifications	166
9.7.1	ASTM D4950 Specification	167
9.7.2	Service Category “L” Chassis (and Universal Joint) Grease	167
9.7.3	Service Category “G” Wheel Bearing Grease	167
9.7.4	Multi-purpose Category	168
9.7.5	Dropping Point	169
9.7.6	Water Washout	170
9.7.7	Water Spray-Off	171
9.7.8	Bearing Oxidation Test	172
9.7.9	Grease Cleanliness and Noise	173
9.7.10	Grease Mobility Test	173
9.7.11	Evaporation	175
9.7.12	Oxidation Stability for Storage of Biobased Greases	176
9.7.13	Oxidation Stability in Service	177
9.8	Friction and Wear Tests	177
9.8.1	Four-ball Wear Test and Four-ball EP	177
9.9	Application Examples of Biobased Greases	177
9.9.1 Rail Curve Greases 177
9.9.2 Solid Lubricants 180
9.9.3 Truck Greases 184
References 186

10 Factors Affecting the Environment 187
10.1 Biodegradable and Biobased 187
10.2 REACH 190
10.3 Biodegradation of Oils 191
 10.3.1 Biodegradability Test 192
 10.3.2 Electrolytic Respirometer 192
10.4 Toxicity Types and Testing Methods 194
10.5 Chronic Toxicity 194
10.6 Terrestrial Plant Toxicity 195
References 196

List of Useful Organizations 197

Useful Test Methods 199

Glossary 203

Index 209
About the Authors

Lou A.T. Honary

Lou A.T. Honary is a professor and founding director of the University of Northern Iowa’s National Ag-Based Lubricants Center. He joined the UNI faculty in 1982 and in 1991, he initiated the research and development of soybean oil based lubricants and greases, leading to the creation of the UNI-NABL Center which is a premier applied research center specifically focused on biobased lubricants and greases.

As an applied researcher, Honary’s work has resulted in eight patents or co-patents, two more patents pending and numerous publications and presentations at national and international conferences. With the University of Northern Iowa’s Research Foundation, in 2000, Honary formed a commercial lubricants and grease manufacturing company that has brought to the market various biobased products and is recognized as a leader in biobased grease manufacturing. With over 40 commercial products currently on the market having their origins to his research, Honary is considered perhaps the most knowledgeable expert in the area of biobased lubricants and greases in the United States.

Professor Honary has served in leadership capacities in many organizations including memberships in the American Oil Chemist Society (AOCS), Society of Tribologists and Lubrication Engineers (STLE), Society of Automotive Engineers (SAE), National Lubricating Grease Lubricating Institute (NLGI), European Lubricating Grease Institute (ELGI), American Society for Testing and Materials (ASTM), and National Fluid Power Association (NFPA). He has served as president of the Fluid Power Society (FPS), in Iowa, Member At Large on the Board of Directors of the International Fluids Power Association (IFPS), an Officer on the ASTM D02 Committee, and a member of the Board of Directors of NLGI, and chairman of a working group on the performance of biobased greases for ELGI.

Dr. Honary is an entrepreneurial professor recognized for his visionary approach to research. He has served on an Iowa Governor’s committees, on a congressionally mandated Biomass Research and Development Advisory Committee under the United States Department of Energy (DOE) and Department of Agriculture (USDA), and has served as a consultant to government and industry. Honary’s consulting work has included the preparation of a series of protocols for the creation of specifications for eleven biobased hydraulic oils for the US Department of the Navy to be used as a substitute for conventional hydraulic fluids.

As a passionate promoter of biobased products, Honary is known for many firsts, including patenting the first soybean oil based tractor hydraulic fluid, the first soybean oil based
transformer oil, the first soybean oil based wood preservative as a creosote substitute, the first biobased solid stick lubricant for railroads, the first soybean oil based rail curve grease among many other products. In 2010 he and his team introduced a revolutionary efficient and safe heating process using microwave energy for the manufacturing of biobased greases.

Honary is a sought after speaker at various technical conferences owing to his ability to present complex concepts associated with biobased lubricants in a practical and easy to understand approach. This book provides an example of his passion for teaching by presenting an engaging and easy to follow approach, making this book both enjoyable to read and a resource to keep.

Erwin W. Richter

Erwin Richter was born in 1934. He taught in the public schools of Michigan before receiving his PhD in biochemistry from the University of Iowa in 1970. He was a member of the faculty at the University of Northern Iowa from 1963 to 1996. In 2001 he began working at The University of Northern Iowa’s National Ag-Based Lubricants Center as a consultant and continues there today. His interests in chemistry led him to develop his knowledge in the area of biolubricant development and testing. He is the author of several books and laboratory manuals dealing with chemistry education.
Vegetable oils present properties that are suitable for industrial and automotive lubricants and grease applications. They also present potential for usability as an alternative to petroleum when the demand for this finite resource is ever increasing.

The goals of writing this book include educating the next generation of students and professionals in this promising field to create and use biobased lubricants and greases. As the world petroleum resources continue to deplete, resource-poor and developing countries will have to struggle to compete to acquire high priced petroleum and petroleum products. Creating lubricant (and fuel) products from renewable sources can offer self sufficiency and potentially economical alternatives to the countries most desperate for these advantages.

After nearly two decades of research and development of biobased lubricants and greases, we hope that sharing our knowledge and expertise will help to create a long standing resource for the future. Both authors are seasoned professors and researchers, and the book is written in a way that it teaches the concepts for general audience comprehension. For more advanced concepts in biobased lubricants and greases, there are other sources that delve into the engineering and agronomical aspects of our work in greater detail.

With the hope of a better, greener future, we offer this book to our future generations.

Lou Honary
Erwin Richter