PARALLEL COMPUTING ON HETEROGENEOUS NETWORKS

Alexey Lastovetsky
University College, Dublin, Ireland
PARALLEL COMPUTING ON HETEROGENEOUS NETWORKS
PARALLEL COMPUTING ON HETEROGENEOUS NETWORKS

Alexey Lastovetsky
University College, Dublin, Ireland
To my wife Gulnara, my daughters Olga and Oksana, and my parents Leonid and Lyudmila.
CONTENTS

Acknowledgments xiii
Introduction 1

PART I  EVOLUTION OF PARALLEL COMPUTING 9

1. Serial Scalar Processor 11
   1.1. Serial Scalar Processor and Programming Model 11
   1.2. Basic Program Properties 11

2. Vector and Superscalar Processors 15
   2.1. Vector Processor 15
   2.2. Superscalar Processor 18
   2.3. Programming Model 21
   2.4. Optimizing Compilers 22
   2.5. Array Libraries 33
      2.5.1. Level 1 BLAS 34
      2.5.2. Level 2 BLAS 35
      2.5.3. Level 3 BLAS 40
      2.5.4. Sparse BLAS 43
   2.6. Parallel Languages 44
      2.6.1. Fortran 90 45
      2.6.2. The C[ ] Language 50
   2.7. Memory Hierarchy and Parallel Programming Tools 59
   2.8. Summary 63

3. Shared Memory Multiprocessors 65
   3.1. Shared Memory Multiprocessor Architecture and Programming Models 65
   3.2. Optimizing Compilers 67
   3.3. Thread Libraries 68
      3.3.1. Operations on Threads 69
      3.3.2. Operations on Mutexes 71
3.3.3. Operations on Condition Variables 73
3.3.4. Example of MT Application: Multithreaded Dot Product 75
3.4. Parallel Languages 78
3.4.1. Fortran 95 78
3.4.2. OpenMP 80
3.5. Summary 94

4. Distributed Memory Multiprocessors 95
4.1. Distributed Memory Multiprocessor Architecture: Programming Model and Performance Models 95
4.2. Message-Passing Libraries 103
4.2.1. Basic MPI Programming Model 104
4.2.2. Groups and Communicators 106
4.2.3. Point-to-Point Communication 111
4.2.4. Collective Communication 120
4.2.5. Environmental Management 127
4.2.6. Example of an MPI Application: Parallel Matrix-Matrix Multiplication 127
4.3. Parallel Languages 130
4.4. Summary 138

5.1. Processors Heterogeneity 142
5.1.1. Different Processor Speeds 142
5.1.2. Heterogeneity of Machine Arithmetic 146
5.2. Ad Hoc Communication Network 147
5.3. Multiple-User Decentralized Computer System 150
5.3.1. Unstable Performance Characteristics 150
5.3.2. High Probability of Resource Failures 150
5.4. Summary 154

PART II PARALLEL PROGRAMMING FOR NETWORKS OF COMPUTERS WITH MPC AND HMPI 157

6. Introduction to mpC 159
6.1. First mpC Programs 159
6.2. Networks 164
6.3. Network Type 170
6.4. Network Parent 173
6.5. Synchronization of Processes 178
6.6. Network Functions 182
6.7. Subnetworks 186
6.8. A Simple Heterogeneous Algorithm Solving an Irregular Problem 190
6.9. The RECON Statement: A Language Construct to Control the Accuracy of the Underlying Model of Computer Network 196
6.10. A Simple Heterogeneous Algorithm Solving a Regular Problem 199
6.11. Principles of Implementation 206
6.11.1. Model of a Target Message-Passing Program 207
6.11.2. Mapping of the Parallel Algorithm to the Processors of a Heterogeneous Network 209
6.12. Summary 211

7. Advanced Heterogeneous Parallel Programming in mpC 215
7.1. Interprocess Communication 215
7.2. Communication Patterns 233
7.3. Algorithmic Patterns 241
7.4. Underlying Models and the Mapping Algorithm 244
7.4.1. Model of a Heterogeneous Network of Computers 244
7.4.2. The Mapping Algorithm 247
7.5. Summary 253

8. Toward a Message-Passing Library for Heterogeneous Networks of Computers 255
8.1. MPI and Heterogeneous Networks of Computers 255
8.2. HMPI: Heterogeneous MPI 257
8.3. Summary 261

PART III APPLICATIONS OF HETEROGENEOUS PARALLEL COMPUTING 263

9. Scientific Applications 265
9.1. Linear Algebra 265
9.1.1. Matrix Multiplication 265
9.1.2. Matrix Factorization 288
9.1.3. Heterogeneous Distribution of Data and Heterogeneous Distribution of Processes Compared 295
9.2. N-Body Problem 298
9.3. Numerical Integration 300
  9.3.1. Basic Quadrature Rules 301
  9.3.2. Adaptive Quadrature Routines 304
  9.3.3. The quanc8 Adaptive Quadrature Routine 307
  9.3.4. Parallel Adaptive Quadrature Routine for Heterogeneous Clusters 313

9.4. Simulation of Oil Extraction 323

9.5. Summary 328

10. Business and Software Engineering Applications 331

10.1. Acceleration of Distributed Applications 331
  10.1.1. Introduction 331
  10.1.2. Distributed Application of a “Supermarket Chain” 332
  10.1.3. Parallel Implementation of the Remote Operation getDistribution 334
  10.1.4. Experimental Results 337

10.2. Parallel Testing of Distributed Software 338
  10.2.1. Motivation 338
  10.2.2. Parallel Execution of the Orbix Test Suite on a Cluster of Multiprocessor Workstations 339
  10.2.3. Experimental Results 350

10.3. Summary 350

APPENDIXES 353

Appendix A. The mpC N-Body Application 353
  A.1. Source Code 353
  A.2. User’s Guide 368

Appendix B. The Block Cyclic Matrix Multiplication Routine for Heterogeneous Platforms 371
  B.1. Source Code 371

Appendix C. The Parallel Adaptive Quadrature Routine 385
  C.1. Source Code 385
  C.2. User’s Guide 395

Appendix D. The mpC User’s Guide 397
  D.1. Definition of Terms 397
  D.2. Outline of the mpC Programming Environment 397
  D.3. Supported Systems 398
I would like to express my deep appreciation to my colleagues and friends Alexey Kalinov, Ilya Ledovskih, Dmitry Arapov, and Mikhail Posypkin for the happy days when we were working together on the mpC programming language. Their skills, devotion, and creativity created the basis for its successful implementation. I am very grateful to Victor Ivannikov for his persistent support of both the mpC project and myself in good and bad times. I am also very grateful to Ted Lewis without whose support and contribution the mpC project would not be possible at all. My special thanks are to Hesham El-Rewini and Albert Zomaya for their positive and encouraging attitude to the idea of this book. I also wish to thank Ravi Reddi for his comments and valuable contribution in the material presented in Sections 8.2, 9.1.1.3, and 9.1.1.4.