Essential Forensic Biology

Second Edition

Alan Gunn
Liverpool John Moores University, Liverpool, UK
Essential Forensic Biology
Second Edition
Essential Forensic Biology

Second Edition

Alan Gunn
Liverpool John Moores University, Liverpool, UK
To Sarah, who believes that no evidence is required in order to find a husband guilty.
Contents

Acknowledgements xi
Introduction 1

PART A: HUMAN REMAINS: DECAY, DNA, TISSUES AND FLUIDS 9

Chapter One: The decay, discovery and recovery of human bodies 11
 The dead body 11
 The stages of decomposition 12
 Factors affecting the speed of decay 28
 Discovery and recovery of human remains 35
 Determining the age and provenance of skeletonized remains 39
 Future developments 41

Chapter Two: Body fluids and waste products 45
 Blood cells and blood typing 45
 Methods for detecting blood 48
 Confirming the presence of blood 51
 Bloodstain pattern analysis 51
 Artificial blood 70
 Post mortem toxicological analysis of blood 71
 Saliva and semen 72
 Vitreous humor 75
 Faeces and urine as forensic indicators 77
 Future directions 82

Chapter Three: Molecular biology 85
 The structure of DNA 86
 DNA sampling 87
 DNA profiling 88
 Polymerase chain reaction 92
 Short tandem repeat markers 97
 Single nucleotide polymorphism markers 107
 Determination of ethnicity 108
 Determination of physical appearance 109
 Determination of personality traits 110
 Mobile element insertion polymorphisms 110
 Mitochondrial DNA 112
 RNA 115
 DNA databases 116
 Future developments 120
Chapter Four: Human tissues
 The outer body surface 123
 Hair 138
 Bones 142
 Teeth 151
 Future developments 159

Chapter Five: Wounds 163
 Definitions 163
 Blunt force injuries 165
 Sharp force traumas 172
 Bone damage 180
 Additional aspects of wound interpretation 183
 Asphyxiation 184
 Pathology associated with drug use 190
 Gunshot wounds 192
 Bite marks 200
 Burns and scalds 203
 Ageing of wounds 205
 Post mortem injuries 207
 Future developments 209

PART B: INVERTEBRATES AND VERTEBRATES 211

Chapter Six: Invertebrates 1: biological aspects 213
 An introduction to invertebrate biology 213
 Invertebrates as forensic indicators in cases of murder or
 suspicious death 214
 Invertebrates as a cause of death 238
 Invertebrates as forensic indicators in cases of neglect and animal
 welfare 241
 The role of invertebrates in food spoilage and hygiene litigation 243
 The illegal trade in invertebrates 246
 Invertebrate identification techniques 247
 Future directions 250

Chapter Seven: Invertebrates 2: practical aspects 253
 Calculating the PMI/time since infestation from invertebrate
 development rates 254
 Complicating factors affecting earliest oviposition date calculations 260
 Determination of the PMI using invertebrate species composition 266
 Determination of the PMI using ectoparasites 267
 Determination of movement from invertebrate evidence 267
 Invertebrate evidence in cases of wound myiasis and neglect 269
 Detection of drugs, toxins and other chemicals in invertebrates 271
 Obtaining human/vertebrate DNA evidence from invertebrates 271
 Determining the source and duration of invertebrate infestations
 of food products 272
CONTENTS

Collecting invertebrates for forensic analysis 273
Killing and preserving techniques for invertebrates 276
Future directions 279

Chapter Eight: Vertebrates 283
Introduction 284
Vertebrate scavenging of human corpses 284
Vertebrates causing death and injury 291
Neglect and abuse of vertebrates 292
Vertebrates and drugs 293
Vertebrates and food hygiene 295
Illegal trade and killing of protected species of vertebrates 295
Identification of vertebrates 298
Future directions 309

PART C: PROTISTS, FUNGI, PLANTS AND MICROBES 313

Chapter Nine: Protists, fungi and plants 315
Introduction 316
Protists 316
Fungi 321
Plants 324
Plant secondary metabolites as sources of drugs and poisons 347
Illegal trade in protected plant species 351
Future directions 353

Chapter Ten: Bacteria and viruses 355
Introduction 355
The role of microorganisms in the decomposition process 356
Microbial profiles as identification tools 357
Microbial infections and human behaviour 370
Microbial infections that can be mistaken for signs of criminal activity 372
The use of microorganisms in bioterrorism 373
Future directions 390

References 393

Index 417
Acknowledgements

Thanks to Sarah and to all of the academic and technical staff at the School of Biological & Earth Sciences, Liverpool John Moores University who helped me along the way.
Introduction

The word ‘forensic’ derives from the Latin *forum* meaning ‘a market place’: in Roman times this was the where business transactions and some legal proceedings were conducted. For many years the term ‘forensic’ had a restricted definition and denoted a legal investigation but it is now commonly used for any detailed analysis of past events i.e. when one looks for evidence. For example, tracing the source of a pollution incident is now sometimes referred to as a ‘forensic environmental analysis’, determining past planetary configurations is referred to as ‘forensic astronomy’, whilst historians are said to examine documents in ‘forensic detail’. For the purposes of this book, ‘forensic biology’ is defined broadly as ‘the application of the science of biology to legal investigations’ and therefore covers human anatomy and physiology, organisms ranging from viruses to vertebrates and topics from murder to the trade in protected plant species.

Although forensic medicine and forensic science only became specialised areas of study within the last 200 or so years, their origins can be traced back to the earliest civilisations. The first person in recorded history to have medico-legal responsibilities was Imhotep, Grand Vizier, Chief Justice, architect and personal physician to the Egyptian pharaoh Zozer (or Djoser). Zozer reigned from 2668–2649 BC and charged Imhotep with investigating deaths that occurred under suspicious circumstances. The codification of laws was begun by the Sumerian king Ur-Nammu (ca 2060 BC) with the eponymous ‘Ur-Nammu Code’ in which the penalties of various crimes were stipulated whilst the first record of a murder trial appears on clay tablets inscribed in 1850 BC at the Babylonian city of Nippur.

In England, the office of coroner dates back to the era of Alfred the Great (871–899) although his precise functions at this time are not known. It was during the reign of Richard I (1189–1199) that the coroner became an established figure in the legal system. The early coroners had widespread powers and responsibilities that included the investigation of crimes ranging from burglary to cases of murder and suspicious death. The body of anyone dying unexpectedly had to be preserved for inspection by the coroner, even if the circumstances were not suspicious. Failure to do so meant that those responsible for the body would be fined, even though it might have putrefied and created a noisome stench by the time he arrived. It was therefore not unusual for unwanted bodies to be dragged away at night to become another village’s problem. The coroner’s responsibilities have changed considerably over the centuries but up until 1980 he was still expected to view the body of anyone dying in suspicious circumstances.