EARLY DRUG DEVELOPMENT

Strategies and Routes to First-in-Human Trials

Edited by

MITCHELL N. CAYEN
Cayen Pharmaceutical Consulting, LLC
EARLY DRUG DEVELOPMENT
CONTENTS

Contributors xix
Foreword xxi
Preface xxiii

PART I INTRODUCTION

1 Drug Discovery and Early Drug Development 3
 Mitchell N. Cayen
 1.1 The Drug Discovery and Development Scene, 3
 1.1.1 Pharmaceutical Research and Development Challenges, 3
 1.1.2 Attrition During Discovery and Development, 5
 1.1.3 Corporate Strategy Perspectives, 6
 1.2 Drug Discovery, 8
 1.2.1 Target Identification, 8
 1.2.2 Hit-to-Lead Identification, 9
 1.2.3 Lead Optimization Strategies, 10
 1.3 Pre-FIH Drug Development, 12
 1.3.1 Introduction, 12
 1.3.2 Pre-FIH Toxicology, 12
 1.3.3 Formulation and Drug Delivery, 13
 1.3.4 Pre-FIH Drug Metabolism and Pharmacokinetics, 14
 1.4 The FIH Trial, 15
 1.5 The Regulatory Landscape, 16
1.6 Contract Research Organizations, 18
1.7 Concluding Remarks on Introductory Perspectives, 22
References, 23

PART II LEAD OPTIMIZATION STRATEGIES

2 ADME Strategies in Lead Optimization
Amin A. Nomeir

2.1 Introduction, 27
2.2 Absorption, 30
 2.2.1 Permeability, 32
 2.2.2 Efflux Transport, 35
2.3 Distribution, 36
 2.3.1 Plasma Protein Binding, 36
 2.3.2 Brain Uptake, 40
 2.3.3 Tissue Distribution, 41
2.4 Metabolism, 42
 2.4.1 In Vitro Metabolism Studies, 42
2.5 Excretion, 61
2.6 Pharmacokinetics, 64
2.7 Prioritizing ADME Screens, 68
2.8 In Silico ADME Screening, 69
2.9 The Promise of Metabolomics, 76
2.10 Conclusions, 78
References, 79

3 Prediction of Pharmacokinetics and Drug Safety in Humans
Peter L. Bullock

3.1 Introduction, 89
3.2 Prediction of Human Pharmacokinetic Behavior, 91
 3.2.1 In Vitro Models for Predicting Intestinal Absorption,
 Intrinsic Hepatic Clearance, and Drug Interactions, 92
 3.2.2 In Vivo Models for Predicting Pharmacokinetic
 Behavior, 107
3.3 Prediction of Drug Safety, 113
 3.3.1 In Vitro Approaches for Predicting Drug Safety, 114
 3.3.2 In Vivo and Ex Vivo Methods for Predicting Drug Safety, 116
 3.3.3 In Silico Methods for Predicting Drug Safety, 119

3.4 Conclusions, 120

References, 121

4 Bioanalytical Strategies
Christopher Kemper

4.1 Introduction, 131
 4.1.1 Bioanalysis: The Primary Basis for Pharmacokinetic and Pharmacodynamic Evaluations, 131
 4.1.2 Regulatory Initiatives in Bioanalysis, 132

4.2 Basic Bioanalytical Techniques and Method Development, 133
 4.2.1 Sample Preparation, 133
 4.2.2 Component Separation, 139
 4.2.3 Detection, 144
 4.2.4 Ligand-Binding Assays, 149
 4.2.5 Integration of Method Development Components: Example with LC-MS/MS, 154

4.3 Bioanalytical Method Validation, 156
 4.3.1 Introduction to Validation, 156
 4.3.2 The Primary Metrics: Acceptance Criteria, 157
 4.3.3 Additional Validation Criteria, 165

4.4 Special Issues with Ligand-Binding Assays, 168
 4.4.1 Characterization, 168
 4.4.2 Selectivity Issues, 168
 4.4.3 Matrix Effects, 168
 4.4.4 Quantification Issues, 169

4.5 Partial and Cross-Validations, 169

4.6 Application of Validated Methods to Sample Analyses: Some Perspectives, 170
 4.6.1 Stability, 171
 4.6.2 Calibration Curves, 172
 4.6.3 Quality Control Samples, 172
 4.6.4 Analytical Notes, 172
 4.6.5 Acceptance Criteria, 173
4.6.6 Repeat Analyses of Incurred Samples, 174
4.6.7 Sample Stability and Incurred Samples, 176
4.6.8 Scientific Versus Production Issues, 177
4.6.9 Documentation, 178
4.6.10 Resources, 179

4.7 Risk-Based Paradigms: Discovery and Development Support, 188
4.7.1 Logistics and Discovery, 189
4.7.2 Early Involvement of Consultants and CROs, 192
4.7.3 Metabolites: Bioanalytical Issues Pre-FIH, 193
4.7.4 Racemic Mixtures, 194

4.8 The Road to “First in Human”, 194
4.8.1 Clinical Collaboration Prior to Initiation of the FIH Trial, 195

4.9 International Perspectives, 196
4.9.1 European Union, 196
4.9.2 Japan, 197
4.9.3 India, 197

4.10 Conclusions, 198

References, 199

PART III BRIDGING FROM DISCOVERY TO DEVELOPMENT

5 Chemistry, Manufacturing, and Controls: The Drug Substance and Formulated Drug Product 207
 Örn Almarsson and Christopher J. Galli

5.1 Introduction, 207

5.2 Pre-NCE Activities and CMC Development, 208
 5.2.1 Rationale for CMC Involvement in Discovery, 208
 5.2.2 Pharmaceutical Properties, 209
 5.2.3 CMC Interactions with Discovery at NCE Selection, 212
 5.2.4 Biopharmaceuticals, 214

5.3 CMC Considerations at the NCE Stage, 216
 5.3.1 Solid-State Compounds, 216
 5.3.2 Selection of Development Form (Crystalline State), 217
 5.3.3 Characterization of Drug Substance (Preformulation), 220

5.4 NCE-to-GLP Transition (Bridging from Discovery to Pre-FIH Development), 222
5.4.1 Drug Synthesis and Formulation for Toxicity Studies: Meeting the Delivery Objectives, 222
5.4.2 Bridging to Formulations for FIH Studies, 224

5.5 CMCs to Meet Clinical Trial Material Requirements, 229
5.5.1 Drug Substance Comparability with Material Used in Pre-FIH GLP Studies, 229
5.5.2 Good Manufacturing Practices, 230
5.5.3 Analytical Development for Assay of Drug Substance and Drug Product, 230
5.5.4 Placebos and Blinding, 235

5.6 CMC Strategic Considerations, 236
5.6.1 Interactions Across Disciplines, 236
5.6.2 Outsourcing (and Insourcing) CMC Work, 237

5.7 Case Studies, 238
5.7.1 Indinavir, 238
5.7.2 Doxorubicin Peptide Conjugate, 241

5.8 Evolution of Drug Development: Implications for CMCs in the Future, 244

Resources, 245
References, 247

6 Nonclinical Safety Pharmacology Studies Recommended for Support of First-in-Human Clinical Trials

Duane B. Lakings

6.1 Introduction and Overview, 249
6.2 Timing of Safety Pharmacology Studies, 252
6.3 CNS Safety Pharmacology, 254
6.4 Cardiovascular Safety Pharmacology, 254
6.4.1 Study Designs, 254
6.4.2 Additional Information on QT-Interval Prolongation or Delayed Ventricular Repolarization, 267
6.5 Respiratory System Safety Pharmacology, 267
6.6 Renal/Urinary Safety Pharmacology, 274
6.7 Gastrointestinal System Safety Pharmacology, 274
6.8 Autonomic Nervous System Safety Pharmacology, 275
6.9 Other Systems, 276
6.10 Discussion and Conclusions, 277
References, 279

PART IV PRE-IND DRUG DEVELOPMENT

7 Toxicology Program to Support Initiation of a Clinical Phase I Program for a New Medicine 283
 Hugh E. Black, Stephen B. Montgomery, and Ronald W. Moch

7.1 Introduction, 283
7.2 Toxicology Support of Discovery, 284
7.3 Goals of the Pre-FIH Toxicology Program, 285
7.4 Importance of a Clinical Review of the Nonclinical Pharmacology Data, 286
7.5 Take the Time to Plan Appropriately, 286
7.6 The Active Pharmaceutical Ingredient, 286
 7.6.1 Availability Issues, 286
 7.6.2 Impurity Considerations, 287
 7.6.3 Inactive Ingredients, 288
7.7 Timely Conduct of In Vitro Assays, 288
 7.7.1 Comparative In Vitro Metabolism, 288
 7.7.2 Genetic Toxicology, 289
7.8 Development of Validated Bioanalytical and Analytical Assays, 290
 7.8.1 Validated Bioanalytical Assay for Determining Plasma Concentrations of the NCE, 290
 7.8.2 Validated Analytical Assays for Dosing Solutions or Suspensions, 290
 7.8.3 Validated Assays for Dosing Solution Stability, 291
7.9 Planning for the Conduct of Toxicity Studies, 291
 7.9.1 Timing of the IND/CTA, 291
 7.9.2 The Danger of Shortcuts, 292
 7.9.3 Pilot In Vivo Studies for Dose Selection and Bleeding Time Determinations, 292
7.10 GLP Toxicology Program, 293
 7.10.1 Toxicology Requirements for Initiating an FIH Trial, 294
 7.10.2 Toxicology Protocols, 295
 7.10.3 Study Monitoring, 302
CONTENTS

7.10.4 Microscopic Examination of Tissues, 303
7.10.5 Considerations of the NOAEL and MTD in Protocol Design, 303

7.11 Pre-IND Meeting, 304
7.12 Conclusions, 305

References, 306

8 Toxicokinetics in Support of Drug Development

Gary Eichenbaum, Vangala Subrahmanyam, and Alfred P. Tonelli

8.1 Introduction, 309
8.2 Historical Perspectives, 310
8.3 Regulatory Considerations, 311
8.4 Factors to Consider in the Design of Toxicokinetic Studies, 312
 8.4.1 Drug Supply Requirements, 312
 8.4.2 Species Selection, 313
 8.4.3 API Properties: Salt/Crystal Form, Particle Size, and Impurities, 314
 8.4.4 Dose-Related Exposure, 314
 8.4.5 Changes in Pharmacokinetics Following Multiple Dosing, 315
 8.4.6 Selection of Dosing Vehicles, 316
 8.4.7 Bioanalytical Method, 316
 8.4.8 Evaluation of Metabolites, 317
 8.4.9 Evaluation of Enantiomers, 321
 8.4.10 Matrix Considerations, 321
 8.4.11 Number of Animals, 322
 8.4.12 Gender, 322
 8.4.13 Dose Selection, 323
 8.4.14 Dose Volume, 324
 8.4.15 Blood Sampling Variables, 324
 8.4.16 Sampling Times, 329
 8.4.17 Considerations with Biopharmaceutics, 331
 8.4.18 Practical Considerations in Planning a Toxicokinetic Program, 332
8.5 Toxicokinetic Parameter Estimates and Calculations, 332
 8.5.1 Data Analysis (Noncompartmental Versus Compartmental), 332
 8.5.2 Noncompartmental Kinetic Parameters, 333
 8.5.3 Statistics and Outliers, 338
 8.5.4 Physiologically Based Toxicokinetic Modeling, 338
8.6 Interpretation of Toxicokinetic Data, 339
8.6.1 Review of In-life Results, 339
8.6.2 Protocol Deviations, 339
8.6.3 Confirmation of Exposure and Evaluation of Dose Proportionality, 339
8.6.4 Exposure after Single and Multiple Dosing: Accumulation Perspectives, 341
8.6.5 Gender Effects, 343
8.6.6 Relationship to Toxicology Findings, 344
8.6.7 Midstudy Changes in Dosing Duration or Dose Level, 345

8.7 Role of Toxicokinetics in Different Types of Toxicity Studies, 345
8.7.1 Acute Studies, 346
8.7.2 Dose-Range-Finding and Tolerability Studies, 346
8.7.3 Subchronic Studies (Two Weeks to Three Months), 347
8.7.4 Chronic Studies (Six to 12 Months), 347
8.7.5 Safety Pharmacology and Specialty Studies, 347
8.7.6 Genetic Toxicology, 348
8.7.7 Reproductive Toxicology, 348
8.7.8 Carcinogenicity Studies, 349
8.7.9 Bridging Toxicity Studies, 350

8.8 Role of Toxicokinetics in Integrated Safety Assessment, 350
8.8.1 Safety Margins: Role in Setting Clinical Doses for FIH Studies, 350
8.8.2 Role of Protein Binding and Blood Partitioning, 352
8.8.3 Toxicokinetics: Caution about Safety Margins, 353
8.8.4 Safety Margins for Different Toxicity Profiles, 354

8.9 Conclusions, 355
References, 355

9 Good Laboratory Practice
Anthony B. Jones, Kathryn Hackett-Fields, and Shari L. Perlstein

9.1 Introduction, 361

9.2 Hazard and Risk, 363

9.3 U.S. GLP Regulations, 366
9.3.1 Subpart A: General Provisions, 367
9.3.2 Subpart B: Organization and Personnel, 369
9.3.3 Subpart C: Facilities, 376
9.3.4 Subpart D: Equipment, 376
9.3.5 Subpart E: Testing Facilities Operation, 377
9.3.6 Subpart F: Test and Control Articles, 378
9.3.7 Subpart G: Protocol for and Conduct of a Nonclinical Laboratory Study, 379
9.3.8 Subpart J: Reports and Records, 384
9.3.9 Disqualification of Testing Facilities, 387
9.4 GLPs in the Bioanalytical Laboratory, 387
9.4.1 Organization and Personnel, 389
9.4.2 Equipment and Testing Facilities Operation, 389
9.4.3 Some Challenges in the Bioanalytical Laboratory, 391
9.5 Moving Into the Future: A Closing Overview, 393
9.6 Appendixes, 395
Appendix 9.1: Preambles—Perspectives on GLP Requirements, 395
Appendix 9.2: International Regulations, 396
Appendix 9.3: Paraphrased FDA GLP Definitions, 398
Appendix 9.4: FDA Inspections, 399
Appendix 9.5: Critical Phase Inspections—What, Why, How, and When?, 401
Appendix 9.6: Test System, 402
Appendix 9.7: 21 CFR Part 11, 402
Appendix 9.8: SOP Generation and Review, 408
Appendix 9.9: Study Director’s Responsibilities, 411
Appendix 9.10: Regulatory Requirements for the Study Protocol, 413
References, 416

PART V PLANNING THE FIRST-IN-HUMAN STUDY AND REGULATORY SUBMISSION

10 Estimation of Human Starting Dose for Phase I Clinical Programs
Lorrene A. Buckley, Parag Garhyan, Rafael Ponce, and Stanley A. Roberts
10.1 Introduction, 423
10.2 Characteristics of Well-Behaved Therapeutic Candidates, 424
10.3 Regulatory Guidances for FIH-Enabling Nonclinical Safety Assessment: General Principles, 426
10.4 Nonclinical Pharmacokinetics and Pharmacodynamics for Human Dose Projection, 427